Generalized Neutrino Isocurvature

Wolfram Ratzinger
With Christopher Gerlach and Pedro Schwaller
Based on <u>2504.17047</u> and to appear

The CMB so far:

- Adiabatic/curvature perturbations
 - Strict relation between overdensities in different fluids

Search for isocurvature

- Additional initial condition, with constant total density
- 2 (3) combinations:
 - \circ Relative to photons DM, neutrino or baryon overdense $S_{\gamma {
 m DM}}, \ S_{\gamma
 u}, \ S_{\gamma {
 m b}}$
- Need to generalize curvature power spectrum to 3x3 matrix

$$\langle \zeta \zeta \rangle
ightharpoonup \left\langle egin{array}{cccc} \zeta \zeta & \zeta S_{\gamma {
m DM}} & \zeta S_{\gamma
u} \\ \zeta S_{\gamma {
m DM}} & S_{\gamma {
m DM}} S_{\gamma {
m DM}} & S_{\gamma {
m DM}} S_{\gamma
u} \\ \zeta S_{\gamma
u} & S_{\gamma {
m DM}} S_{\gamma
u} & S_{\gamma
u} S_{\gamma
u} \end{array}
ight
angle$$

Very difficult to fit, no one has done it

Search for isocurvature

Instead pick one additional combination

Generalized neutrino isocurvature:

-consider all ratios out of neutrino and DM isocurvature

So far people considered:

- -one "random" combination
- -DM isocurvature only

Outline

I Part: Neutrino isocurvature comes generically with DM isocurvature

II Part: CMB observables with general isocurvature

Adiabatic vs. Isocurvature perturbation

Wands, Malik, Lyth, Liddle 2000

 Perturbation on super-horizon scale correspond to patches perturbed relative to background evolution

Adiabatic: Perturbed patch only ahead of background

Isocurvature: Perturbed patch goes through different history

Isocurvature: Special case

- Consider conserved number densities
- If ρ_i is conserved number density

$$\dot{\rho}_i = -3H\rho_i$$

may define isocurvature as

$$S_{ij} = \delta \left(\frac{\rho_i}{\rho_j}\right) / \frac{\rho_i}{\rho_j}$$

Only adiabatic perturbation

Weinberg 2004

8

e.g. ultra light DM from misalignment mechanism

Curvature + DM Isocurvature

Neutrinos are just freestreaming dark radiation for CMB

Curvature + neutrino Isocurvature -> naively no DM Isocurvature

Curvature + neutrino Isocurvature Also generates DM Isocurvature

Only consider this period

- freeze-in
- freeze-out

- ...

Curvature + neutrino Isocurvature -> gravitationally induce DM Isocurvature

Curvaton case: Lyth, Ungarelli, Wands 2018 BBN relics: Adshead, Holder, Ralegankar 2020

Freeze-in

Yield
$$Y = \frac{n_{\mathrm{DM}}}{n_{\mathrm{SM}}} \sim \frac{\Gamma(T_{\mathrm{SM}} = m)}{H(T_{\mathrm{SM}} = m)}$$

Wolfram Ratzinger

13

Freeze-out

Yield
$$Y \sim Y_{\rm eq}(T^*), \ \Gamma_{\rm an}(T^*) = H(T^*)$$

II Part: CMB observables

The CMB spectrum

Observables depend on $\tan(\varphi) = \frac{S_{\gamma \nu}}{S_{\gamma {\rm DM}}}$

Result of CMB and LSS fit

-Fit to Planck and BAO data

-Varying isocurvature amplitude and correlation

-Fixed spectral index $n_{\rm iso}=1$

Future searches

Staying optimistic:

Let's assume CMB stage 4 finds isocurvature here ——
-> DM is produced via freeze-in

Requires assumptions:

- -> No direct interaction
- -> baryogenesis unaffected

->...

Cosmological archaeology

A few more hints...

$$\frac{S_{\gamma\nu}}{S_{\gamma\mathrm{DM}}}$$

Full cosmological history

Conclusion

- Cosmologies with neutrino isocurvature generically feature fully correlated DM isocurvature
 - -> Should included general case in searches

 If detected, this provides valuable information about the entire history

Thanks