Thomas Montandon Elsa M. Teixeira Adele Poudou Vivian Poulin

arXiv:2505.20193

What?

 \circ cold: $E_{
m kinetic} \ll m$

 \circ hot: $E_{
m kinetic}\gg m$

o warm:

 $E_{
m kinetic}\gg m$ \longrightarrow $E_{
m kinetic}\sim m$ \longrightarrow $E_{
m kinetic}\ll m$

What?

 \circ cold: $E_{
m kinetic} \ll m$

 \circ hot: $E_{
m kinetic}\gg m$

o warm:

 $E_{
m kinetic}\gg m$ \longrightarrow $E_{
m kinetic}\sim m$ \longrightarrow $E_{
m kinetic}\ll m$

- What?
 - \circ cold: $E_{
 m kinetic} \ll m$
 - \circ hot: $E_{
 m kinetic}\gg m$
 - o warm:

$$E_{
m kinetic}\gg m$$
 \longrightarrow $E_{
m kinetic}\sim m$ \longrightarrow $E_{
m kinetic}\ll m$

- What?
 - \circ cold: $E_{
 m kinetic} \ll m$
 - \circ hot: $E_{
 m kinetic}\gg m$
 - o warm:

$$E_{
m kinetic}\gg m$$
 \longrightarrow $E_{
m kinetic}\sim m$ \longrightarrow $E_{
m kinetic}\ll m$

What?

 \circ cold: $E_{
m kinetic} \ll m$

 \circ hot: $E_{
m kinetic}\gg m$

o warm:

 $E_{
m kinetic}\gg m$ \longrightarrow $E_{
m kinetic}\sim m$ \longrightarrow $E_{
m kinetic}\ll m$

Sigma-8 tension

Abdalla et al (2203.06142)

Why?
$$\sigma_R^2 = \int dk rac{k^2 P_m(k)}{2\pi^2} W^2(kR)$$

 $R=8h^{-1}{
m Mpc}\sim{
m Galaxy}$ clustering scale

Sigma-8 tension

Why?

$$\sigma_R^2=\int dk rac{k^2 P_m(k)}{2\pi^2} W^2(kR)$$

 $R=8h^{-1}{
m Mpc}\sim{
m Galaxy}$ clustering scale

The KiDS Collaboration: 2503.19441

Sigma-8 tension

Why?

$$\sigma_R^2 = \int dk rac{k^2 P_m(k)}{2\pi^2} W^2(kR)$$

 $R=8h^{-1}{
m Mpc}\sim{
m Galaxy}$ clustering scale

We can still test nature of DM!

The KiDS Collaboration: 2503.19441

Decaying Dark Matter Bayesian analysis

- How?
- For LSS we need Non Linearity!
 J.Bucko, A.Schneider et al. 2307.03222
 - DDM simulation with PKDGRAV3
 - Neural Network fit of P(k)

Decaying Dark Matter Bayesian analysis

- How?
- For LSS we need Non Linearity!
 J.Bucko, A.Schneider et al. 2307.03222
 - DDM simulation with PKDGRAV3
 - Neural Network fit of P(k)

$$\Gamma = 0.10^{+0.17}_{-0.05} \,\text{Gyr}^{-1},$$

$$t_{1/2}^{\text{DDM}} = 6.93^{+7.88}_{-2.85} \,\text{Gyr},$$

$$N_0^{\text{DDM}}/N_{\text{ini}} = 0.25_{-0.16}^{+0.27},$$

Planck: There is something here!

 $\Gamma = 0.10^{+0.17}_{-0.05} \,\mathrm{Gyr}^{-1}$ $t_{1/2}^{\text{DDM}} = 6.93_{-2.85}^{+7.88} \,\text{Gyr}\,,$

 $N_0^{\text{DDM}}/N_{\text{ini}} = 0.25_{-0.16}^{+0.27}$,

 $v = 1250^{+1450}_{-1000} \,\mathrm{km/s}$

Planck: There is something here!

- Planck: There is something here!
- What KiDS really measures: not just S8!

- Planck: There is something here!
- What KiDS really measures: not just S8!
- KiDS: a prior issue...

- Planck: There is something here!
- What KiDS really measures: not just S8!
- KiDS: a prior issue...
- KiDS and Planck

Conclusion

- Planck-2018 + BOSS-BAO + Pantheon-Plus
 - Subject to volume effect
 - Best-fit S8 compatible with KiDS
- KiDS-1000
 - Cannot be reduced to its S8 measure (eg S8-prior)
 - Subject to prior effect
- KiDS + Planck-informed prior

KiDS profile likelihood

Bayesian vs Frequentist

Bayesian: density of points

Profile likelihood: prior independent!

A.Nygaard et al 2308.06379

