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• Meet the axion

• Hot axion freezeout

• Thermal axion production at LO: 
dos and don'ts

• Results and conclusions

• Based on work with Ph.D. 
candidate Killian Bouzoud, see 
Bouzoud JG 2404.06113 published on 
JHEP



In this talk: the axion
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• Strong CP problem: a term  in the QCD Lagrangian is 
allowed by gauge symmetry and renormalizability. It would violate CP.

∝ θ ϵμνρσFμνFρσ

• Unobserved neutron electric dipole moment implies . Why so 
small?

|θ | < 10−10

<latexit sha1_base64="t9X+uY6nQFUxS42qunITx6eZ2bE="></latexit>
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µω +
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q̄i(i /D →mi)qi+ ?
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Spontaneous symmetry breaking: a 
Goldstone Boson, θ, has a continuous “shift 
symmetry”, i.e. the underlying rotation.

(number) ! (number) + ✓ ! ✓
Trick: couple a Goldstone to the problematic operator.

Now “tilt the wine bottle”: θ will now dynamically move to a 
fixed value = 0 by symmetry à no problematic nEDM.

Cleaning up the mess

“instantons”

• Strong CP problem: a term  in the QCD Lagrangian is 
allowed by gauge symmetry and renormalizability. It would violate CP.

∝ θ ϵμνρσFμνFρσ

• Unobserved neutron electric dipole moment implies . Why so 
small?

|θ | < 10−10

• A mechanism of spontaneous symmetry breaking would explain this, forcing 
 with the axion as its light (would-be) Goldstone boson and “cleaning 

up” this problem Peccei Quinn, Weinberg, Wilczek
θ → 0
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Not in this talk: axion dark matter
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• The axion can also “clean up” another problem: when  MeV 
chiral symmetry breaking “tilts” the potential

• The misaligned cosmological axion field starts  
oscillating* around this new non-degenerate minimum

• Cold dark matter from ultralight bosons  
in the form of a Bose condensate 
 

* Most scenarios feature non-trivial topology:  
strings and/or domain walls

T ≲ TQCD ≈ 200

Spontaneous symmetry breaking: a 

Goldstone Boson, θ, has a continuous “shift 

symmetry”, i.e. the underlying rotation.

(number) ! (number) + ✓ ! ✓
Trick: couple a Goldstone to the problematic operator.

Now “tilt the wine bottle”: θ will now dynamically move to a 

fixed value = 0 by symmetry à no problematic nEDM.

Cleaning up the mess

“instantons”

Actual Swiss dishwasher



In this talk: hot axions
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• DM is not the only expected axion population. Consider e.g. the so called 
invisible (KSVZ) axion Kim Shifman Vainshtein Zakharov 

, with  the axion field and  the symmetry-

breaking scale,   GeV from astrophysics. 

ℒint = − αs

16π
a

fPQ
ϵμνρσFμνFρσ a fPQ

fPQ > 4 × 108

ma ∝ mπ fπ /fPQ ≈ 5.7μeV(1012GeV/fPQ)
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invisible (KSVZ) axion Kim Shifman Vainshtein Zakharov 

, with  the axion field and  the symmetry-

breaking scale,   GeV from astrophysics. 

ℒint = − αs

16π
a

fPQ
ϵμνρσFμνFρσ a fPQ

fPQ > 4 × 108

ma ∝ mπ fπ /fPQ ≈ 5.7μeV(1012GeV/fPQ)

• At sufficiently high temperatures hot axions would be in thermal equilibrium. 
They would later freeze out and contribute to dark radiation.  

, Hubble rate . Hence  MeVΓint ∼ T3/f2
PQ H ∼ T2/mPl Tf.o. ∼ f2

PQ/mPl ≳ 10

• This is constrained by BBN and CMB determinations of the so-called effective 
number of neutrinos Neff



Dark radiation from hot axions
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Introduction Collective e!ects Phenomenological results Conclusion and outlook

Axion cosmology

If the axion exists:
J. Preskill, M.B. Wise, F. Wilczek, Phys. Lett. B 120 (1983) 127 / L.F. Abbott, P. Sikivie, Phys. Lett. B 120 (1983) 133 / M. Dine, W. Fischler,

Phys. Lett. B 120 (1983) 137

↭ Bose-Einstein condensate axion population → dark matter
↭ Ultra-relativistic (“hot”) axion population → dark radiation ↑ focus of this talk

Extra contribution to the e!ective number of neutrinos
See talk by Greg Jackson
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Experimental motivation

Current results
From Planck at 2ω: !Ne! < 0.3

Future experiments

Expected constraint (at 2ω):
↭ From Simons Observatory:

!Ne! < 0.1
↭ From CMB-S4: !Ne! < 0.06
↭ From CMB-HD: !Ne! < 0.028

Contribution to !Ne! from
freeze-out
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Figure: !Ne! as a function of the decoupling
temperature for a BSM scalar
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• At  the axion would be 
one in  light d.o.f.s in 
equilibrium. At  one in 

• The smaller , the later the 
freeze out, the larger the 
contribution to 

T > TEW
O(100)

T < TQCD
𝒪(10)

fPQ

ΔNeff
• Future measurements will probe 

higher and higher freeze-out 
temperatures
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Planck:  at ΔNeff < 0.3 2σ
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Dark radiation from hot axions
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• This is a “cartoon” for an 
instantaneous decoupling

• More quantitatively, how is the 
axion contribution to  
computed as a function of ? 

• How can we estimate and 
improve the theory uncertainty 
of this calculation?

Neff
fPQ
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The axion rate
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• To study its freeze out we then need to follow  
 

• Invisible (KSVZ) axion  

 

• Valid to first order in  and to all orders in  (QCD) 
Bödeker Sangel Wörmann PRD93 (2016)

• . If  remains close to eq. form,  dominates

fa(t, k) = (2π)3dNa/d3xd3k

ℒint = − αs

16π
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fPQ
ϵμνρσFμν aFρσ a
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3 /(4π)

ΔNeff ∝ ∫k
k fa(tCMB, k) fa k ≳ T
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The axion rate: naive leading order
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• Spectral function implies taking the cut. Need to go to two loops,  
 

• Cuts give naive tree-level diagrams for  processes for axions with  
 
 

• They give phase space convolution of bare  and eq. statistical functions 
 

• (Unsurprisingly) find the well-known, simple Boltzmann picture

∙ = J

2 ↔ 2 k ≳ T

|ℳ |2

Φs : Φf : Φg :

Φs(s) :

Φg(g) :

Φs(f) : Φf(s) : Φs|f :

Φs(g) :

Φg(s) : Φs|g :

Φf(g) :

Φg(f) : Φf |g :

Figure 1: The 1 and 2-loop graphs contributing to eq. (2.8). Each subset is gauge independent.

Dashed lines denote scalars; solid lines fermions; wiggly lines gauge fields; dotted lines ghosts; blobs

the operator Tµν . Graphs obtained by symmetrizations have been omitted.
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[ T

p]
f [ T

q]
g[ T

q−p]
h[K2]y

[P 2]a[Q2]b[(Q− P )2]c[(K − P )2]d[(K −Q)2]e
, (2.10)

where {P} denotes a fermionic Matsubara four-momentum. The indices x ≡ a + b − c and

y ≡ a + b + c + d + e − f − g − h − 2 guarantee the overall dimensionality GeV4. In the

fermionic cases the representation is not unique; for the class of masters discussed in sec. 2.3,

which have a cut corresponding to a 2↔ 2 scattering, we have ordered the indices such that

a, c, e are non-negative.

The reduction of the energy-momentum tensor correlator to the basis of eqs. (2.9) and

(2.10) has been carried out with a self-designed algorithm implemented in FORM [10]. After

the use of symmetries related to substitutions of integration variables, and noting that terms

with odd numbers of γ5-matrices do not contribute at this order, the results read

Φs = 4(D − 3)J2
11 , (2.11)
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Figure 1: 1+2 → 3+a processes in the KSVZ model. Wiggly lines represent gluons, arrowed

lines represent fermions and dashed lines represent axions.

from astrophysical constraints could give a ∆Neff contribution that would be accessible to

the next-generation CMB telescopes.

In the remainder of this Section we first discuss the naive Boltzmann-equation approach

to axion production, its limitations and the emergence of collective effects in Sec. 2.1; this

subsection is rather pedagogical, expert readers can skip to Sec. 2.2, where we discuss the

implementation of collective effects in the literature. Finally, in Sec. 2.3 we introduce our

resummation schemes. Numerical results are presented in the following Section. A similar

analysis has been recently presented in [37] for freeze-in dark matter production.

2.1 The naive approach to the rate and the emergence of collective effects

Let us now discuss the determination of the rate Γ(k). Naive kinetic theory and the Boltzmann

equation give

Γ(k)naive =
1

4k

∫

dΩ2→2

∑

1,2,3∈SM

|M1+2→3+a|
2 f1(p1)f2(p2)[1± f3(k1)]

nB(k)
, (2.2)

where considerations on the validity region of this approach will be presented soon. The

equilibrium phase-space distributions are fi(p) = nB(p) when i is bosonic and conversely

fi(p) = nF(p) ≡ (exp(p/T ) + 1)↔1 when fermionic. p1, p2, k1, k are the momenta of the two

incoming particles 1, 2 and of the outgoing 3 and a respectively, and the 1 + nB or 1 − nF

accounts for final-state Bose enhancement and Pauli blocking. The factor of 1/4k corresponds

to a standard 1/2k Lorentz-invariant phase space multiplying a factor of 1/2 to account for

identical particles in the initial state and to neutralize double-counting in the sums when

particles 1 and 2 are different.

The final ingredient in (2.2) are the matrix elements squared |M1+2→3+a|2, summed over

all degeneracies of particles 1, 2, 3. These are to be integrated over the 2 ↔ 2 phase space

dΩ2→2, as given by Eq. (A.1) in App. A. We obtained said matrix elements using automated

– 4 –
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• The well-known, simple Boltzmann picture has a well-known problem: the  
and  channel diagrams are related to Coulomb scattering.  turns into  
for this non-renormalizable coupling. Naive rate is IR divergent 
 
 

• The solution is also well know: these processes are not taking place in a 
vacuum. A small-  Coulomb gluon cannot resolve individual hard quarks and 
gluons, with typical wavelengths and separations of order  and starts 
seeing their collective behavior

t
u 1/t2 1/t

t
1/T

Figure 1: 1+2 → 3+a processes in the KSVZ model. Wiggly lines represent gluons, arrowed

lines represent fermions and dashed lines represent axions.
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incoming particles 1, 2 and of the outgoing 3 and a respectively, and the 1 + nB or 1 − nF

accounts for final-state Bose enhancement and Pauli blocking. The factor of 1/4k corresponds

to a standard 1/2k Lorentz-invariant phase space multiplying a factor of 1/2 to account for

identical particles in the initial state and to neutralize double-counting in the sums when

particles 1 and 2 are different.

The final ingredient in (2.2) are the matrix elements squared |M1+2→3+a|2, summed over

all degeneracies of particles 1, 2, 3. These are to be integrated over the 2 ↔ 2 phase space

dΩ2→2, as given by Eq. (A.1) in App. A. We obtained said matrix elements using automated
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ḟa(t,k) = !a(k)nB(k) =
1

4k

∫
d”2→2

∑

bcd

∣∣∣Mbc
da(p1,p2;k1,k)

∣∣∣
2
fb(p1) fc(p2) [1± fd(k1)]
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• Collective behavior first emerges at : screening, plasma 
oscillations and Landau damping. Treated by resumming Hard Thermal 
Loops (HTLs): i.e. the gauge-invariant thermal amplitudes for  external 
momenta.  Emergence of gluon screening mass  
Braaten Pisarski (1990)

• HTL resummation for small  yields the  
strict LO result Braaten Yuan PRL66 (1991)   
Graf Steffen 1008.4528 
 

•  reveals that underlying approximations will fail for 

λ ∼ 1/(gT)

gT
m2

D = g2
3T2(Nc/3 + Nf /6)

t

ln k/mD k ≲ mD ∼ g3T
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Figure 2. Left: one-loop axion self-energy. The upper wiggly line denotes a bare gluon with a hard
thermal momentum, while the double wiggly line stands for a soft, HTL-resummed gluon. Cutting this
one-loop axion self-energy corresponds to the square of the diagram on the right. We don’t show its
analogue with a quark or antiquark external scatterer replacing the top ingoing and outgoing gluons.

In arbitrary models J is the operator coupling to the axion field, L → −aJ . With the methods
of [49] one can show that eq. (2.9) is correct to first order in the axion-SM couplings and
to all orders in the internal SM couplings.

In the approach of [23] one can then use eq. (2.4) up to an IR cutoff q→ on the dq
integration. This cutoff must be chosen such that g3T # q→ # T , so that HTL resummation
can be performed only for q # q→. There one can use eq. (2.9). Evaluating eq. (2.10) one
encounters at LO for k ! T and soft Q the diagram on the left of figure 2, where the lower
gluon line carries the loop momentum Q ↔ g3T , while the upper line carries K −Q ≈ K ! T .
Hence it is only the lower line that needs HTL resummation, whereas the upper one can be
kept in its bare form. An identical contribution comes from the diagram where the upper
gluon is soft and lower one hard.

We recall that HTLs are the infrared, gauge-invariant limits of one-loop thermal am-
plitudes with hard loop momentum P ↔ T and soft external momenta Qi ↔ g3T . HTL
resummation accounts for the emergence of collective effects at that scale. We also note that
the imaginary part of the diagram on the left in figure 2 is given by its cut; the cut upper bare
gluon is proportional to ω((K−Q)2) ≈ ω(2Q·K), which forces Q to be space-like in the K & Q

limit. This in turn makes the cut HTL gluon Landau-damped. Hence, the cut of this diagram
corresponds to the square of the diagram shown on the right of figure 2 and its counterpart
with external quarks or antiquarks replacing the incoming and outgoing gluons at the top.

The HTL-resummed result then yields [23]

Γ(k)HTL [23]
KSVZ = g43(N2

c −1)T
210ε6f2

PQ

∫ q→

0
dqq3

∫ q

−q

dq0
q0

(

1− q20
q2

)[
ρL(Q)+

(

1− q20
q2

)

ρT (Q)
]
, (2.11)

where ρL and ρT are the longitudinal and transverse HTL spectral function, obtained from
the retarded propagators in eqs. (A.30)–(A.31) from ρ ≡ GR − GA. We remark that, up
to the overall prefactor, eq. (2.11) agrees with the leading-order soft contribution to the
“transverse momentum broadening coefficient” q̂ in QCD plasmas — see for instance eqs. (36)
and (59) in [50]. We shall make use of this later.
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• strict LO rate Graf Steffen 1008.4528

• :  

 runs over , where the rate extrapolates out of its validity region

ΔNeff ∝ ea

∫k
k ≪ mD
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ėa + 4Hea =
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k
k !a(k) [feq(k)→ fa(t,k)]
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• strict LO rate Graf Steffen 1008.4528

• :  

 runs over , where the rate extrapolates out of its validity region

ΔNeff ∝ ea

∫k
k ≪ mD

• Litmus test: momentum-averaged rate  

  

may become problematic approaching the  
QCD crossover:  , so the contribution  
of the extrapolation regime becomes more  
and more important

⟨Γa⟩ ≡ ∫k
Γa(k)nB(k)/∫k

nB(k)

mD/T ≈ 2
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my plot from Graf Steffen 1008.4528 

k = mD

k = mD

αs ≈ 0.06, Nf = 6

αs ≈ 0.31, Nf = 3

mD = g3T Nc/3 + Nf /6

⟨Γa⟩ ≡ ∫k
Γa(k)nB(k)/∫k

nB(k)

Negative contribution 
completely overtakes 
the rate close to the 

QCD crossover
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• How to address this failure and gauge the theory uncertainty? Dos and don’ts

• Main idea: resum a subset of higher-order contributions, going beyond the 
strict LO 



• Idea 1: resum one-loop Feynman-gauge self-energies for all loop momenta, 
rather than gauge-invariant HTL for soft momenta Rychkov Strumia hep-th/
0701104, Salvio Strumia Xue 1310.6983 
 
 
 

• Manifestly positive rate. Claimed to agree with strict LO at small , with a 
claimed relative  gauge dependence

• We show that this rate is divergent: gauge-dependent sensitivity to the  
chromomagnetic scale. Finite results in the literature from numerical 
artifacts Bouzoud JG 2404.06113

g
𝒪(αs)

g2T
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HTL

HTL

Figure 12: Left: the axion self-energy diagram corresponding to the pole-pole contribution.

Its one cut corresponds to the square of the process shown on the right. See Sec. 2.2 for the

relation between the retarded axion self-energy and the production rate.

FG

FG

Figure 13: Left: the axion self-energy diagram corresponding to the cut-cut contribution.

The black blobs denote the resummed self-energies in Feynman Gauge (FG). Its cut corre-

sponds to the square of processes such as the one shown on the right. Cuts corresponding to

diagrams with external quarks are not shown.

Similarly, the cut-cut contribution is also subleading, as it corresponds to higher-order

2 → 3 processes, as shown in Fig. 13. If both P ∼ T and Q ∼ T , these processes are

suppressed by a factor of g23 compared to leading order, since ω(Q ∼ T ) ∼ g2/T 2 in the

space-like regime. For these processes to be enhanced to leading order we then need to look

for regions where either Q or P are soft. Let us look at the former case for illustration:

there one has ω(Q) ∼ 1/(g2T 2) and ωT (P ) ∼ g/T 2. This latter scaling can be understood as

originating from P = K+O(gT ), P 2 ∼ gT 2, coupled with ImΠT (P ) ∼ g3T 2 in this regime, as

follows from Eq. (B.10). Plugging these results into Eq. (B.2) then yields that this soft-gluon

contribution is also suppressed by a factor of g23 . Our numerical evaluation confirms this.13

13A more careful power-counting analysis shows that the cut-cut contribution should scale like g83 ln
2(1/g3)

in this non-abelian case and like g83 ln(1/g3) in the abelian one, with the different power of the logarithm

originating from the extra logarithmic sensitivity to a collinear P in the gluonic part of Eq. (B.10) compared
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Figure 13: Left: the axion self-energy diagram corresponding to the cut-cut contribution.

The black blobs denote the resummed self-energies in Feynman Gauge (FG). Its cut corre-

sponds to the square of processes such as the one shown on the right. Cuts corresponding to

diagrams with external quarks are not shown.

Similarly, the cut-cut contribution is also subleading, as it corresponds to higher-order

2 → 3 processes, as shown in Fig. 13. If both P ∼ T and Q ∼ T , these processes are

suppressed by a factor of g23 compared to leading order, since ω(Q ∼ T ) ∼ g2/T 2 in the

space-like regime. For these processes to be enhanced to leading order we then need to look

for regions where either Q or P are soft. Let us look at the former case for illustration:

there one has ω(Q) ∼ 1/(g2T 2) and ωT (P ) ∼ g/T 2. This latter scaling can be understood as

originating from P = K+O(gT ), P 2 ∼ gT 2, coupled with ImΠT (P ) ∼ g3T 2 in this regime, as

follows from Eq. (B.10). Plugging these results into Eq. (B.2) then yields that this soft-gluon

contribution is also suppressed by a factor of g23 . Our numerical evaluation confirms this.13

13A more careful power-counting analysis shows that the cut-cut contribution should scale like g83 ln
2(1/g3)

in this non-abelian case and like g83 ln(1/g3) in the abelian one, with the different power of the logarithm

originating from the extra logarithmic sensitivity to a collinear P in the gluonic part of Eq. (B.10) compared
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FG

HTL

Figure 14: Left: the axion self-energy diagram corresponding to the pole-cut contribution.

Its cut corresponds to the square of processes such as the one shown on the right. Cuts

corresponding to external quarks are again not shown.

So we are then left with the pole-cut and cut-pole contributions, as shown in Fig. 14.

These correspond to the 2 → 2 processes we have treated in Sec. 2, with two notable dif-

ferences. First, the intermediate gluon resums a gauge-dependent self-energy, while one of

the external gluons features the HTL, rather than bare, dispersion relation. Secondly, the

crossing of the diagram shown on the right in Fig. 14 into its s-channel counterpart is not

possible, as it would require a time-like Q2. These two differences are the basis of our claim

that this gauge-dependent resummation does not reproduce the strict LO result for g3 " 1.

To see this in detail, let us consider the sum of the pole-cut and cut-pole contributions,

which is given by twice of either of the two. At small g3 and for k ! T we can again neglect

the longitudinal plasmon. Hence

Γ(k)[26]pc+cp =
(N2

c − 1)g43
212ω7k2f2

PQ

∫ →

−→
dq0

∫ →

|q0|
dq

∫ q+k

|q−k|
dp pq

[

1 + nB(q
0) + nB(k − q0)

]

εFG pole
T (P )

↔

{

εFG
L (Q)[(q + p)2 − k2][k2 − (q − p)2]

+ εFG
T (Q)

[(

q20
q2

+
p20
p2

)

(

(q2 + p2 − k2)2 + 4q2p2
)

+ 8q0p0(q2 + p2 − k2)

]}

, (B.6)

where we have taken Q to be the cut momentum and P the pole one. εFG pole
T is the pole

part of the transverse spectral function. It can again be approximated by its bare one, i.e.

εFG pole
T (P % g3T ) ≈ 2ωε(k−q0)δ((k−q0)2−p2) =

ω

p
ε(k−q0)

[

δ(p− |k−q0|)+δ(p+ |k−q0|)
]

.

(B.7)

Exploiting the fact that Q2 < 0, we find that only the k − q0 > 0 region can contribute,

with its quark counterpart. Our numerical evaluation confirms this scaling.
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• Ideas 2 and 3: the analytical properties of thermal amplitudes at soft light-
like momenta allow for a closed-form evaluation of the HTL-resummed part 
Aurenche Gelis Zaraket hep-ph/0204146 Caron-Huot 0811.1603 JG et al 1302.5970 
 
 
 

• Idea 2: “subtracted scheme”. We can now subtract the divergent limit from the 
naive form and add back its HTL-resummed analytical evaluation with one 
less approximation. Corresponds to a resummation of some  effects 
JG Laine (2016) Bouzoud JG 2404.06113
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Figure 2. Left: one-loop axion self-energy. The upper wiggly line denotes a bare gluon with a hard
thermal momentum, while the double wiggly line stands for a soft, HTL-resummed gluon. Cutting this
one-loop axion self-energy corresponds to the square of the diagram on the right. We don’t show its
analogue with a quark or antiquark external scatterer replacing the top ingoing and outgoing gluons.

In arbitrary models J is the operator coupling to the axion field, L → −aJ . With the methods
of [49] one can show that eq. (2.9) is correct to first order in the axion-SM couplings and
to all orders in the internal SM couplings.

In the approach of [23] one can then use eq. (2.4) up to an IR cutoff q→ on the dq
integration. This cutoff must be chosen such that g3T # q→ # T , so that HTL resummation
can be performed only for q # q→. There one can use eq. (2.9). Evaluating eq. (2.10) one
encounters at LO for k ! T and soft Q the diagram on the left of figure 2, where the lower
gluon line carries the loop momentum Q ↔ g3T , while the upper line carries K −Q ≈ K ! T .
Hence it is only the lower line that needs HTL resummation, whereas the upper one can be
kept in its bare form. An identical contribution comes from the diagram where the upper
gluon is soft and lower one hard.

We recall that HTLs are the infrared, gauge-invariant limits of one-loop thermal am-
plitudes with hard loop momentum P ↔ T and soft external momenta Qi ↔ g3T . HTL
resummation accounts for the emergence of collective effects at that scale. We also note that
the imaginary part of the diagram on the left in figure 2 is given by its cut; the cut upper bare
gluon is proportional to ω((K−Q)2) ≈ ω(2Q·K), which forces Q to be space-like in the K & Q

limit. This in turn makes the cut HTL gluon Landau-damped. Hence, the cut of this diagram
corresponds to the square of the diagram shown on the right of figure 2 and its counterpart
with external quarks or antiquarks replacing the incoming and outgoing gluons at the top.

The HTL-resummed result then yields [23]

Γ(k)HTL [23]
KSVZ = g43(N2

c −1)T
210ε6f2

PQ

∫ q→

0
dqq3

∫ q

−q

dq0
q0

(

1− q20
q2

)[
ρL(Q)+

(

1− q20
q2

)

ρT (Q)
]
, (2.11)

where ρL and ρT are the longitudinal and transverse HTL spectral function, obtained from
the retarded propagators in eqs. (A.30)–(A.31) from ρ ≡ GR − GA. We remark that, up
to the overall prefactor, eq. (2.11) agrees with the leading-order soft contribution to the
“transverse momentum broadening coefficient” q̂ in QCD plasmas — see for instance eqs. (36)
and (59) in [50]. We shall make use of this later.
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• Ideas 2 and 3: the analytical properties of thermal amplitudes at soft light-
like momenta allow for a closed-form evaluation of the HTL-resummed part 
Aurenche Gelis Zaraket hep-ph/0204146 Caron-Huot 0811.1603 JG et al 1302.5970 
 
 
 
 

• Idea 3: “tuned scheme”. Add a mass to the Coulomb denominators and tune 
analytically the  coefficient to reproduce the LO result at small . 
Resum some  effects 
Kurkela Lu Moore York (2014) Bouzoud JG 2404.06113

ξ mD/T
𝒪(g)
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Figure 2. Left: one-loop axion self-energy. The upper wiggly line denotes a bare gluon with a hard
thermal momentum, while the double wiggly line stands for a soft, HTL-resummed gluon. Cutting this
one-loop axion self-energy corresponds to the square of the diagram on the right. We don’t show its
analogue with a quark or antiquark external scatterer replacing the top ingoing and outgoing gluons.

In arbitrary models J is the operator coupling to the axion field, L → −aJ . With the methods
of [49] one can show that eq. (2.9) is correct to first order in the axion-SM couplings and
to all orders in the internal SM couplings.

In the approach of [23] one can then use eq. (2.4) up to an IR cutoff q→ on the dq
integration. This cutoff must be chosen such that g3T # q→ # T , so that HTL resummation
can be performed only for q # q→. There one can use eq. (2.9). Evaluating eq. (2.10) one
encounters at LO for k ! T and soft Q the diagram on the left of figure 2, where the lower
gluon line carries the loop momentum Q ↔ g3T , while the upper line carries K −Q ≈ K ! T .
Hence it is only the lower line that needs HTL resummation, whereas the upper one can be
kept in its bare form. An identical contribution comes from the diagram where the upper
gluon is soft and lower one hard.

We recall that HTLs are the infrared, gauge-invariant limits of one-loop thermal am-
plitudes with hard loop momentum P ↔ T and soft external momenta Qi ↔ g3T . HTL
resummation accounts for the emergence of collective effects at that scale. We also note that
the imaginary part of the diagram on the left in figure 2 is given by its cut; the cut upper bare
gluon is proportional to ω((K−Q)2) ≈ ω(2Q·K), which forces Q to be space-like in the K & Q

limit. This in turn makes the cut HTL gluon Landau-damped. Hence, the cut of this diagram
corresponds to the square of the diagram shown on the right of figure 2 and its counterpart
with external quarks or antiquarks replacing the incoming and outgoing gluons at the top.

The HTL-resummed result then yields [23]

Γ(k)HTL [23]
KSVZ = g43(N2

c −1)T
210ε6f2

PQ

∫ q→

0
dqq3

∫ q

−q

dq0
q0

(

1− q20
q2

)[
ρL(Q)+

(

1− q20
q2

)

ρT (Q)
]
, (2.11)

where ρL and ρT are the longitudinal and transverse HTL spectral function, obtained from
the retarded propagators in eqs. (A.30)–(A.31) from ρ ≡ GR − GA. We remark that, up
to the overall prefactor, eq. (2.11) agrees with the leading-order soft contribution to the
“transverse momentum broadening coefficient” q̂ in QCD plasmas — see for instance eqs. (36)
and (59) in [50]. We shall make use of this later.
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 TeVT = 10

 MeVT = 300

At  MeV 
our  is 

 that from 
the divergent 

method in  
Salvio et al 
1310.6983, 

D’Eramo et al 
2108.05371

T = 300
⟨Γa⟩tun.

𝒪(0.1)



Hot axion dark radiation

20

• Solve the Boltzmann equation for   
for an high-T eq. initial condition and  
then obtain  and 

• Freeze-out visible in the broken phase 
Close to the QCD transition we see the 
onset of delayed production, which 
is missing in our calculation of 

fa

ea ΔNeff

ΔNeff
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ωtfa(t,k)→Hkωkfa(t,k) = !a(k)
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(b) Axion energy density

Figure 10: Yield and comoving energy density obtained from the momentum-dependent

rates and fPQ = 108 GeV. The “equilibrium” value (“Eq.”) corresponds to Yeq and ẽeq.

The gray lines on the axion yield figure correspond to the graphical determination of TD, as

defined by (4.9).

at TD for fPQ = 108 GeV. As we can see the values of the two functions are very close, with

the ratio fa(k(T = Tmin))/nB(k(T = TD)) being at most → 1.9. This indicates the validity

of the approximation that the axion phase space distribution gets “frozen” after decoupling

as an equilibrium distribution at temperature TD, which in turn justifies the definition of

the decoupling temperature. The slight difference between the two curves at high k→/T→ are

representative of the spectral distortions mentioned previously. The difference between the

two curves diminishes significantly as fPQ increases, in fact already at fPQ = 109 GeV the two

curves appear to perfectly overlap (in this case the ratio fa(k(T = Tmin))/nB(k(T = TD)) is

at most → 1.075).

From Fig. 9b we can understand that spectral distortions are responsible from a feature

clearly emerging from Fig. 7, i.e. ∆Neff values computed accounting for momentum depen-

dence are always greater than those computed using the momentum-averaged approximation.

In Fig. 9b we plot the integrand for the momentum integral in Eq. (4.3). One can then see

how momentum modes at intermediate k→/T→, which dominate this momentum integral, stay

in equilibrium a little longer, thanks to their larger rate, and thus increase the final energy

density and ∆Neff contribution.

We remark that our determinations of ∆Neff require that ẽa(T ) or Ya(T ) are constant

at T = Tmin and below. However, in some cases the slope of the curve continues to increase

as T → Tmin. Figure 10 shows Ya and ẽa for fPQ = 108 GeV. The inset plots show the

situation described earlier, especially for the tuned method. As T approaches Tc → 155 MeV,

g3 increases very rapidly which can counteract Γ/H → ω3
3TmPl/f2

PQ dropping due to the

overall T 3 driving the production rate. This rise in Γ/H signals the expected sensitivity to
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• NLO Ansatz includes 
known part of NLO rate, 
expected to be the 
dominant one. 

• A 7% effect on the 
observable at the smallest   
allowed value of . 

 in reach of CMB-
HD

• Delayed production at 
QCD transition will 
increase  prediction

fPQ
ΔNeff
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Figure 8. Contribution to the effective number of neutrinos as a function of fPQ. All curves are
obtained from the corresponding rates through the full, momentum-dependent solution of eq. (4.4).
The shaded band corresponds to a conservative estimate of the contribution of unknown, potentially
large NLO corrections to Γ(k)KSVZ, which range from the strict LO to the NLO Ansatz given in
eq. (A.29).

(a) Comparison between the axion phase space
distribution at T = Tmin and the Bose-Einstein
distribution at T = TD.

(b) Integrand of ẽa, compared between T = Tmin
and T = TD where in the latter case fa has been
replaced by nB.

Figure 9. Effects of the spectral distortions on the distribution fa and on its third moment, which is
proportional to the integrand for the comoving energy density ẽa.
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• The thermal axion rate: a thermal QCD calculation applied to cosmology

• Quantification of theory uncertainty from different ways of handling 
collective effects at , crucial for future CMB precision 
measurements Bouzoud JG 2024

• Calculation of the thermal rate from  scatterings with HTL 
resummation now fully automated, needing only a model file for 

• Axion, graviton, gravitino, … rates can be obtained from a model file in 
, from Feynman rule derivation, through computation of  

and thermal masses to 2D numerics 
AUTOTHERM, Bouzoud JG Jackson, coming soon

T ≳ TQCD

2 ↔ 2
ℒ

𝒪(minute) |ℳ |2

Summary and outlook

22
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• Factor the system into “fast” and “slow” modes, and integrate out the 
former to obtain evolution eqs. for the latter
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H

Production and interaction rates 
The basics
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• A particle φ is weakly coupled (coupling h) to an equilibrated bath with its 
internal couplings g 
 
J built of bath fields, one can prove to first order in h and all orders in g 
Bödeker Sangel Wörmann PRD93 (2016) 
 
 
 

• Single-particle phase-space distribution: , sensible only 
for sufficiently weakly interacting particles

•  ensemble average

f(t, k) = (2π)3dNϕ/d3xd3k

⟨Ô⟩

L = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ LbathL = L� + h�⇤J + h⇤J⇤�+ Lbath

<latexit sha1_base64="sGpsyworXyPD4XBdgzK544kvquk="></latexit>

�(k) =
h2

2k0

Z
d4XeiK·Xh[J(X), J(0)]i

<latexit sha1_base64="sXnE7/HuVWGCvVc667zINOoiRbs="></latexit>

ḟ�(t,k) = �(k)
⇥
feq(k

0)� f�(t,k)
⇤
+O(h4)

Production and equilibration
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• If scale separation is present and g≪1, perturbative expansion of Γ(k≳T) can 
reproduce standard Boltzmann. But quasiparticle picture is not necessary!

• When using these equations in cosmology, the l.h.s is modified to include 
Hubble expansion 
 
and often (number, energy) densities are the quantity of interest, e.g. 

<latexit sha1_base64="sGpsyworXyPD4XBdgzK544kvquk="></latexit>

�(k) =
h2

2k0

Z
d4XeiK·Xh[J(X), J(0)]i
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ḟ�(t,k) = �(k)
⇥
feq(k

0)� f�(t,k)
⇤
+O(h4)
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ḟ�(t,k) ! (@t �Hk ·rk)f�(t,k)
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• Manifestly positive rate. Claimed to agree with strict LO at small , with a 
claimed relative  gauge dependence

• Where’s the catch? Look at Landau damping sector 
 is the space-like momentum of the  

FG-resummed gluon 

• Two independent polarisations in medium,  and  wrt 

• At soft , . So agree with HTL?

• Subtlety: for  the transverse HTL vanishes: no perturbative one-
loop magnetic mass. The subleading gauge-dependent term takes over!

g
𝒪(αs)

t = q2
0 − q2

L T q
Q ΠFG

R (Q) = ΠHTL
R (Q) + 𝒪(g2TQ)

q0 ≪ q ∼ gT

The axion rate: beyond strict leading order

FG

HTL

Figure 14: Left: the axion self-energy diagram corresponding to the pole-cut contribution.

Its cut corresponds to the square of processes such as the one shown on the right. Cuts

corresponding to external quarks are again not shown.

So we are then left with the pole-cut and cut-pole contributions, as shown in Fig. 14.

These correspond to the 2 → 2 processes we have treated in Sec. 2, with two notable dif-

ferences. First, the intermediate gluon resums a gauge-dependent self-energy, while one of

the external gluons features the HTL, rather than bare, dispersion relation. Secondly, the

crossing of the diagram shown on the right in Fig. 14 into its s-channel counterpart is not

possible, as it would require a time-like Q2. These two differences are the basis of our claim

that this gauge-dependent resummation does not reproduce the strict LO result for g3 " 1.

To see this in detail, let us consider the sum of the pole-cut and cut-pole contributions,

which is given by twice of either of the two. At small g3 and for k ! T we can again neglect

the longitudinal plasmon. Hence

Γ(k)[26]pc+cp =
(N2

c − 1)g43
212ω7k2f2

PQ

∫ →

−→
dq0

∫ →

|q0|
dq

∫ q+k

|q−k|
dp pq

[

1 + nB(q
0) + nB(k − q0)

]

εFG pole
T (P )

↔

{

εFG
L (Q)[(q + p)2 − k2][k2 − (q − p)2]

+ εFG
T (Q)

[(

q20
q2

+
p20
p2

)

(

(q2 + p2 − k2)2 + 4q2p2
)

+ 8q0p0(q2 + p2 − k2)

]}

, (B.6)

where we have taken Q to be the cut momentum and P the pole one. εFG pole
T is the pole

part of the transverse spectral function. It can again be approximated by its bare one, i.e.

εFG pole
T (P % g3T ) ≈ 2ωε(k−q0)δ((k−q0)2−p2) =

ω

p
ε(k−q0)

[

δ(p− |k−q0|)+δ(p+ |k−q0|)
]

.

(B.7)

Exploiting the fact that Q2 < 0, we find that only the k − q0 > 0 region can contribute,

with its quark counterpart. Our numerical evaluation confirms this scaling.
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• For  the transverse HTL vanishes: no perturbative one-loop 
magnetic mass. The subleading gauge-dependent term takes over!

•  is negative, and remains negative in all 
gauges Kalashnikov Klimov (1980) Linde (1980) Kajantie Kapusta (1982, 1985)

• At zero frequency the imaginary part vanishes by causality. Gauge-
dependent double pole at the chromomagnetic scale 

q0 ≪ q ∼ gT

ΠFG
R,T(0,q) = − 3g2

3 NcqT/16 + 𝒪(g2
3q2)

g2
3T

The axion rate: beyond strict leading order

FG

HTL

Figure 14: Left: the axion self-energy diagram corresponding to the pole-cut contribution.

Its cut corresponds to the square of processes such as the one shown on the right. Cuts

corresponding to external quarks are again not shown.

So we are then left with the pole-cut and cut-pole contributions, as shown in Fig. 14.

These correspond to the 2 → 2 processes we have treated in Sec. 2, with two notable dif-

ferences. First, the intermediate gluon resums a gauge-dependent self-energy, while one of

the external gluons features the HTL, rather than bare, dispersion relation. Secondly, the

crossing of the diagram shown on the right in Fig. 14 into its s-channel counterpart is not

possible, as it would require a time-like Q2. These two differences are the basis of our claim

that this gauge-dependent resummation does not reproduce the strict LO result for g3 " 1.

To see this in detail, let us consider the sum of the pole-cut and cut-pole contributions,

which is given by twice of either of the two. At small g3 and for k ! T we can again neglect

the longitudinal plasmon. Hence

Γ(k)[26]pc+cp =
(N2

c − 1)g43
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where we have taken Q to be the cut momentum and P the pole one. εFG pole
T is the pole

part of the transverse spectral function. It can again be approximated by its bare one, i.e.

εFG pole
T (P % g3T ) ≈ 2ωε(k−q0)δ((k−q0)2−p2) =
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δ(p− |k−q0|)+δ(p+ |k−q0|)
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Exploiting the fact that Q2 < 0, we find that only the k − q0 > 0 region can contribute,

with its quark counterpart. Our numerical evaluation confirms this scaling.
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• For  the transverse HTL vanishes: no perturbative one-loop 
magnetic mass. The subleading gauge-dependent term takes over!

•  is negative, and remains negative in all 
gauges Kalashnikov Klimov (1980) Linde (1980) Kajantie Kapusta (1982, 1985)

• At zero frequency the imaginary part vanishes by causality. Gauge-
dependent double pole at the chromomagnetic scale 
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Figure 14: Left: the axion self-energy diagram corresponding to the pole-cut contribution.

Its cut corresponds to the square of processes such as the one shown on the right. Cuts

corresponding to external quarks are again not shown.

So we are then left with the pole-cut and cut-pole contributions, as shown in Fig. 14.

These correspond to the 2 → 2 processes we have treated in Sec. 2, with two notable dif-

ferences. First, the intermediate gluon resums a gauge-dependent self-energy, while one of

the external gluons features the HTL, rather than bare, dispersion relation. Secondly, the

crossing of the diagram shown on the right in Fig. 14 into its s-channel counterpart is not

possible, as it would require a time-like Q2. These two differences are the basis of our claim

that this gauge-dependent resummation does not reproduce the strict LO result for g3 " 1.

To see this in detail, let us consider the sum of the pole-cut and cut-pole contributions,

which is given by twice of either of the two. At small g3 and for k ! T we can again neglect

the longitudinal plasmon. Hence
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where we have taken Q to be the cut momentum and P the pole one. εFG pole
T is the pole

part of the transverse spectral function. It can again be approximated by its bare one, i.e.
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T (P % g3T ) ≈ 2ωε(k−q0)δ((k−q0)2−p2) =
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Exploiting the fact that Q2 < 0, we find that only the k − q0 > 0 region can contribute,

with its quark counterpart. Our numerical evaluation confirms this scaling.
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g2N(T ) ~ (2rrT)N+lg2N f d3pl ... d3pN+l 

X 
ni= ~ k = l  

[(2rrrkT)2 + q2 k + m2(T)] I l) 

where qk is a uniform linear combination of Pi , r k is 
the corresponding combination of  integers ni, i = 1, 
2 .... , N + l , k  = 1,2 ..... 2N [3], and m(T) is an infra- 
red cutoff, which may appear due to high tempera- 
ture effects, see below. We remind that the summa- 
tion over n i in quantum statistics at T 4 :0  [eq. (1)] 
plays the same role as the integration over P0 in quan- 

i 
tum field theory [7]. At m(T) -+ 0 the leading term in 
the sum over n i is the term with all n i = 0 (and, con- 
sequently, r k = 0). Therefore, at m(T) -+ 0 [3] 

,~ T)N+lg2N f ~3p ~3p 
~N(T) ~ I.zTr d u  l ' " u  N+I 

2N 
X k=ll--I (q2 + m2(T) ) - i  ~g6T4  [\m(l~] g2T ~N-3. (2) 

From eq. (2) it is clear, that in the absence of  the in- 
frared cutoff  (m(T) = 0) contributions to FZ(T) of  
the orderg 8, gl0 etc. contain power (rather than usu- 
al logarithmic) infrared divergences. A general rule 
obvious from eq. (2) is that the leading infrared di- 
vergences in the quantum statistics of  interacting bo- 
sons at a finite temperature are those of the 3-dimen- 
sional quantum field theory [5]. At m(T) <g2T  the 
dangerous terms (2) become finite, but due to these 
terms higher orders of  perturbation theory for g2(T) 
become greater than the lowest ones [3,6]. There- 
fore it is possible to compute the thermodynamic 
potential, energy, entropy etc. of  the Yang-Mills gas 
by means of  perturbation theory only if a sufficient- 
ly large infrared cutoff  appears in the theory at a fi- 
nite temperature. 

It was shown by Kislinger and Morley that high 
temperature effects lead to the appearance of  a pole 
of  the gluon Green function G ab at k o ~ gT, k = 0 
[8]. The value of  k 0 at this pol~ was interpreted in 
ref. [8] as the value of  the infrared cutoff, re(T)~ gT, 
which would solve the above-mentioned infrared 
problem. However, as has been pointed out in refs. 
[3,6], this interpretation is incorrect: leading infra- 
red divergences in quantum statistics of gauge fields 

are connected with the behaviour of  the Green func- 
tion G~ b not in the limit k 0 :# 0, k = 0, but in the 
staticlimit k 0 = 0, k -+ 0 [this limit just corresponds 
to taking r,. = 0 in (1)]. The Green function Gab(k,~ 

"- NV u 
= 0, k ~ 0) in the Coulomb gauge looks as follows 
[7,3]: 

GO Oab =Sab(k2 +llOO(k) ) 1, Gab =Gab iO 

G ab~j = aab(~i] - kik./kZ)G(k), 

where k = I k[; a, b are isotopic indices; i, j = 1,2, 3 
and II00(0 ) ~ g 2 T 2  in the order g 2. Thus in the Green 

ab function Goo(k 0 = O, k) the infrared cutoff  m 0 ~ gT 
actually may appear [6,9,10], see, however, below. 

This effect resembles the well-known Debye screen- 
ing of  electric fields in a hot plasma gas in QED [7]. 
However it is known, that static magnetic fields in 
QED plasma cannot be screened, and, consequently, 
no infrared cutoff appears in Gij (k 0 = 0, k -+ 0) [7]. 
In the Yang Mills gas the large cuttoff  ~ gT also does 
not appear in G ab (k 0 = 0, k -+ 0) [3,6 10]. However t] 
a smaller cutoff  re(T)~  g2T can appear due to the 
higher-order corrections to G -  l(k) [3]. A general 
analysis similar to our analysis of  infrared divergences 
of g2(T) shows that in higher orders of  perturbation 
theory the terms ~ k2(g2T/k)N appear in the expan- 
sion of  G - 1  (k), so that at small k 

G - l ( k )  = k 2 + alg2Tk + a2g4T 2 + a3g6T3/k + .... 
(3) 

where a i are some constants ~1 (in the Feynman 
gauge a 1 = - 9 / 1 6  for the group SU(3) [10] ). This 
series is divergent for k ~ g2T. Analogously it can be 
shown that the series for I100(k ) is also divergent at 
k < g2T. Therefore the perturbation theory can give 
us no information about the behaviour of  the Green 

ab function Guv(k 0 = O, k) at k <g2T. One can show on- 
that the cutoff  re(T), which can appear in G~.b(ko ly 

= 0, k), cannot be greater than O(g2)T. Indeed, at 
k >> O(g2)T the value of the cutoff  would be deter- 
mined by the term ~g4T2  in eq. (3), but in this case 
m( T) ~ g2 T. 

In fact, eq. (3) suggests, that if the infrared cutoff  
re(T) actually exists, it is expected to be of  the order 
g2T [3]. Note, that this value of  m(T) would be of  
the same order as the value of  the cutoff  predicted 
earlier by Polyakov [1 t ] .  

Let us now consider three main possibilities, which 
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• Idea 1: resum one-loop Feynman-gauge self-energies for all loop momenta, 
rather than gauge-invariant HTL for soft momenta  
Rychkov Strumia hep-th/0701104, Salvio Strumia Xue 1310.6983

• Manifestly positive rate. Claimed to agree with strict LO at small , with a 
claimed relative  gauge dependence

• Shown to give rise to a divergent rate, due to the incorrect handling of the 
chromomagnetic sector where perturbation theory breaks down

• Finite numerical results in original papers and in works by other authors 
implementing this method likely due to a finite numerical imaginary part at 
zero frequency 
Bouzoud JG 2404.06113
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Figure 6: Momentum-averaged rate F3 for all three computational schemes. See the main

text for the definition of F3 and for more remarks on the “HTL” curve in Figure 6b. The

step-like features in the two plots stem from changes in Nf (T ) through Eq. (3.1).

Numerical results obtained for the production rate, as well as for other quantities of

phenomenological interest defined in Section 4, have been made available on ZENODO [70].

In Fig. 5 we now present some results for the production rate with respect to T at fixed

k→. This figure confirms the finding of Fig. 3, namely that in the region of validity of the

calculations, i.e. k ! T , the strict LO and subtraction schemes agree perfectly. On the other

hand, when k " mD or, in the low T , high g3 region, k → T → mD, both methods yield

unphysical negative rates. However, it can be seen from Figures 3b and 5b for example that

the region where the subtraction production rate is negative is smaller than the region where

the strict LO rate is negative. The subtraction method also manages to keep the negative

values at a more acceptable level, see e.g. Figure 3b where the negative dip around k = 0 is

barely visible.

Next, we compute and plot the momentum average 〈Γ〉 of the rate, defined as

〈· · · 〉 ↔

∫

d3k
(2π)3nB(k)(· · · )
∫

d3k
(2π)3nB(k)

. (3.4)

In the interest of comparisons with previous works, we recast it in the form of F3(T ) in [26, 28].

Adapting it to our notation, it is expressed as:7

F3(T ) =
512ω5f2

PQ 〈Γ〉

(N2
c − 1)g43(T )T

3
. (3.5)

7Readers may have noticed that (3.5) is lacking the 1PI effective coefficient c̃Ψg (T ) present in [28]. This is

because we consider the situation T → mΨ, with mΨ the mass of the heavy KSVZ fermion. In this regime

c̃Ψg (T ) → 1.

– 16 –

�� ��� �� ��� �� ���
�

�

��

��

��

��

��

� � ���

��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

�

Figure 13. The control function F3 defined in Eq. (2.8) as a function of the temperature (left)
and the strong coupling gs (right). The dashed gray line on the right panel corresponds to the Hard
Thermal Loop (HTL) approximation [37, 59], and it is valid only for small couplings gs < 0.5.

Thermal masses for the electroweak sector

The tree-level scalar potential for the 2HDM is given in Eq. (A.16). The thermal evolution
of electroweak sector in the 2HDM is the subject of Refs. [120–123], and one-loop thermal
corrections to the potential read
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Here, we include contributions from bosons and fermions, and we denote their (Higgs fields
dependent) masses mb(Hi) and mf (Hi), respectively. The relative minus sign is due to
fermion fields running in the loop. The dimensionless quantities nb and nf count the number
of internal degrees of freedom. The function JF and JB are defined as follows [118, 119]
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At high temperatures, more specifically for mb,f/T < 1.8 [124], we can approximate
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where af = ⇡
2 exp(3/2� 2�E) and ab = 16af with the Euler-Mascheroni number �E .

In the electroweak symmetric phase, the global minimum is located with the Higgs fields
at the origin, vu,d(T > TEWPT) = 0. The thermal corrections to the quadratic fluctuations
of the Higgs fields around the origin read

V
T

2HDM = �µ
2
u (T )H

†
uHu + �µ

2
d
(T )H†

d
Hd , (B.25)
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Figure 6: Momentum-averaged rate F3 for all three computational schemes. See the main

text for the definition of F3 and for more remarks on the “HTL” curve in Figure 6b. The

step-like features in the two plots stem from changes in Nf (T ) through Eq. (3.1).

Numerical results obtained for the production rate, as well as for other quantities of

phenomenological interest defined in Section 4, have been made available on ZENODO [70].

In Fig. 5 we now present some results for the production rate with respect to T at fixed

k→. This figure confirms the finding of Fig. 3, namely that in the region of validity of the

calculations, i.e. k ! T , the strict LO and subtraction schemes agree perfectly. On the other

hand, when k " mD or, in the low T , high g3 region, k → T → mD, both methods yield

unphysical negative rates. However, it can be seen from Figures 3b and 5b for example that

the region where the subtraction production rate is negative is smaller than the region where

the strict LO rate is negative. The subtraction method also manages to keep the negative

values at a more acceptable level, see e.g. Figure 3b where the negative dip around k = 0 is

barely visible.

Next, we compute and plot the momentum average 〈Γ〉 of the rate, defined as

〈· · · 〉 ↔

∫

d3k
(2π)3nB(k)(· · · )
∫

d3k
(2π)3nB(k)

. (3.4)

In the interest of comparisons with previous works, we recast it in the form of F3(T ) in [26, 28].

Adapting it to our notation, it is expressed as:7

F3(T ) =
512ω5f2

PQ 〈Γ〉

(N2
c − 1)g43(T )T

3
. (3.5)

7Readers may have noticed that (3.5) is lacking the 1PI effective coefficient c̃Ψg (T ) present in [28]. This is

because we consider the situation T → mΨ, with mΨ the mass of the heavy KSVZ fermion. In this regime

c̃Ψg (T ) → 1.
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Figure 6: Momentum-averaged rate F3 for all three computational schemes. See the main

text for the definition of F3 and for more remarks on the “HTL” curve in Figure 6b. The

step-like features in the two plots stem from changes in Nf (T ) through Eq. (3.1).

Numerical results obtained for the production rate, as well as for other quantities of

phenomenological interest defined in Section 4, have been made available on ZENODO [70].

In Fig. 5 we now present some results for the production rate with respect to T at fixed

k→. This figure confirms the finding of Fig. 3, namely that in the region of validity of the

calculations, i.e. k ! T , the strict LO and subtraction schemes agree perfectly. On the other

hand, when k " mD or, in the low T , high g3 region, k → T → mD, both methods yield

unphysical negative rates. However, it can be seen from Figures 3b and 5b for example that

the region where the subtraction production rate is negative is smaller than the region where

the strict LO rate is negative. The subtraction method also manages to keep the negative

values at a more acceptable level, see e.g. Figure 3b where the negative dip around k = 0 is

barely visible.

Next, we compute and plot the momentum average 〈Γ〉 of the rate, defined as

〈· · · 〉 ↔

∫

d3k
(2π)3nB(k)(· · · )
∫

d3k
(2π)3nB(k)

. (3.4)

In the interest of comparisons with previous works, we recast it in the form of F3(T ) in [26, 28].

Adapting it to our notation, it is expressed as:7

F3(T ) =
512ω5f2

PQ 〈Γ〉

(N2
c − 1)g43(T )T

3
. (3.5)

7Readers may have noticed that (3.5) is lacking the 1PI effective coefficient c̃Ψg (T ) present in [28]. This is

because we consider the situation T → mΨ, with mΨ the mass of the heavy KSVZ fermion. In this regime

c̃Ψg (T ) → 1.
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and the strong coupling gs (right). The dashed gray line on the right panel corresponds to the Hard
Thermal Loop (HTL) approximation [37, 59], and it is valid only for small couplings gs < 0.5.

Thermal masses for the electroweak sector

The tree-level scalar potential for the 2HDM is given in Eq. (A.16). The thermal evolution
of electroweak sector in the 2HDM is the subject of Refs. [120–123], and one-loop thermal
corrections to the potential read
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Here, we include contributions from bosons and fermions, and we denote their (Higgs fields
dependent) masses mb(Hi) and mf (Hi), respectively. The relative minus sign is due to
fermion fields running in the loop. The dimensionless quantities nb and nf count the number
of internal degrees of freedom. The function JF and JB are defined as follows [118, 119]
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At high temperatures, more specifically for mb,f/T < 1.8 [124], we can approximate
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where af = ⇡
2 exp(3/2� 2�E) and ab = 16af with the Euler-Mascheroni number �E .

In the electroweak symmetric phase, the global minimum is located with the Higgs fields
at the origin, vu,d(T > TEWPT) = 0. The thermal corrections to the quadratic fluctuations
of the Higgs fields around the origin read
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Figure 6: Momentum-averaged rate F3 for all three computational schemes. See the main

text for the definition of F3 and for more remarks on the “HTL” curve in Figure 6b. The

step-like features in the two plots stem from changes in Nf (T ) through Eq. (3.1).

Numerical results obtained for the production rate, as well as for other quantities of

phenomenological interest defined in Section 4, have been made available on ZENODO [70].

In Fig. 5 we now present some results for the production rate with respect to T at fixed

k→. This figure confirms the finding of Fig. 3, namely that in the region of validity of the

calculations, i.e. k ! T , the strict LO and subtraction schemes agree perfectly. On the other

hand, when k " mD or, in the low T , high g3 region, k → T → mD, both methods yield

unphysical negative rates. However, it can be seen from Figures 3b and 5b for example that

the region where the subtraction production rate is negative is smaller than the region where

the strict LO rate is negative. The subtraction method also manages to keep the negative

values at a more acceptable level, see e.g. Figure 3b where the negative dip around k = 0 is

barely visible.

Next, we compute and plot the momentum average 〈Γ〉 of the rate, defined as

〈· · · 〉 ↔

∫

d3k
(2π)3nB(k)(· · · )
∫

d3k
(2π)3nB(k)

. (3.4)

In the interest of comparisons with previous works, we recast it in the form of F3(T ) in [26, 28].

Adapting it to our notation, it is expressed as:7

F3(T ) =
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(N2
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. (3.5)

7Readers may have noticed that (3.5) is lacking the 1PI effective coefficient c̃Ψg (T ) present in [28]. This is

because we consider the situation T → mΨ, with mΨ the mass of the heavy KSVZ fermion. In this regime

c̃Ψg (T ) → 1.
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Figure 13. The control function F3 defined in Eq. (2.8) as a function of the temperature (left)
and the strong coupling gs (right). The dashed gray line on the right panel corresponds to the Hard
Thermal Loop (HTL) approximation [37, 59], and it is valid only for small couplings gs < 0.5.

Thermal masses for the electroweak sector

The tree-level scalar potential for the 2HDM is given in Eq. (A.16). The thermal evolution
of electroweak sector in the 2HDM is the subject of Refs. [120–123], and one-loop thermal
corrections to the potential read
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Here, we include contributions from bosons and fermions, and we denote their (Higgs fields
dependent) masses mb(Hi) and mf (Hi), respectively. The relative minus sign is due to
fermion fields running in the loop. The dimensionless quantities nb and nf count the number
of internal degrees of freedom. The function JF and JB are defined as follows [118, 119]
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At high temperatures, more specifically for mb,f/T < 1.8 [124], we can approximate
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where af = ⇡
2 exp(3/2� 2�E) and ab = 16af with the Euler-Mascheroni number �E .

In the electroweak symmetric phase, the global minimum is located with the Higgs fields
at the origin, vu,d(T > TEWPT) = 0. The thermal corrections to the quadratic fluctuations
of the Higgs fields around the origin read
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Figure 13. The control function F3 defined in Eq. (2.8) as a function of the temperature (left)
and the strong coupling gs (right). The dashed gray line on the right panel corresponds to the Hard
Thermal Loop (HTL) approximation [37, 59], and it is valid only for small couplings gs < 0.5.

Thermal masses for the electroweak sector

The tree-level scalar potential for the 2HDM is given in Eq. (A.16). The thermal evolution
of electroweak sector in the 2HDM is the subject of Refs. [120–123], and one-loop thermal
corrections to the potential read
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Here, we include contributions from bosons and fermions, and we denote their (Higgs fields
dependent) masses mb(Hi) and mf (Hi), respectively. The relative minus sign is due to
fermion fields running in the loop. The dimensionless quantities nb and nf count the number
of internal degrees of freedom. The function JF and JB are defined as follows [118, 119]
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At high temperatures, more specifically for mb,f/T < 1.8 [124], we can approximate
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where af = ⇡
2 exp(3/2� 2�E) and ab = 16af with the Euler-Mascheroni number �E .

In the electroweak symmetric phase, the global minimum is located with the Higgs fields
at the origin, vu,d(T > TEWPT) = 0. The thermal corrections to the quadratic fluctuations
of the Higgs fields around the origin read
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