

Weighing neutrinos with 21cm intensity mapping at the SKAO

Gabriele Autieri, PhD student at SISSA (Trieste, Italy), Supervisor: Prof. Matteo Viel

Based on: arxiv 2504.18625, GA, M. Berti, B.S. Haridasu, M. Spinelli, M. Viel

21CM LINE - INTRODUCTION

[Pritchard & Loeb, 2011]

Neutral hydrogen (HI) line:

hyperfine splitting of the ground state due to interaction between the magnetic moments of proton and electron.

After reionization:

- * Most of the HI is in galaxies and in the intergalactic medium (IGM).
- * The 21cm signal is a biased tracer of the underlying matter field.

LINE-INTENSITY MAPPING — THEORY

[Bernal + 2022]

- ➤ Intensity mapping (IM): measures the integrated emission from individually unresolved galaxies and intergalactic medium (IGM).
- > Probes large volumes quickly —— high potential of cross-correlations.

21CM LINE - FOREGROUNDS

METHODOLOGY

The goal is to forecast the constraining power of future 21cm intensity mapping with the SKAO on the sum of neutrino masses, Σm_{ν} .

➤ Build **synthetic data sets** that mimic realistic observations that will be possible with the SKAO and forecast the constraining power with a Bayesian analysis.

➤ We focus on 21cm IM auto-power spectrum and 21cm IM - galaxies cross-correlation power spectrum measurements.

MASSIVE NEUTRINOS IN COSMOLOGY

Free-streaming: neutrinos freestream out of high-density regions suppressing perturbations on small scales. The resulting suppression in the matter power spectrum provides a way to constrain neutrino masses.

FORECASTING - SURVEYS TO BUILD SYNTHETIC DATA SETS

Surveys to build synthetic data sets

IM surveys

SKA1-Mid surveys in redshift range 0 < z < 3

Euclid-like survey

Euclid-like survey in redshift range

DESI-like survey

DESI ELG- like survey in redshift range 0.7 < z < 1.7

FORECASTING - BUILDING THE SYNTHETIC DATA SETS

For each redshift bin, the survey specifications fix the range of accessible scales

z-bin volume

$$V_{\text{bin}}(z_c) = \Omega_{\text{sur}} \int_{z-\Delta z/2}^{z+\Delta z/2} dz' \frac{cr(z')^2}{H(z')}$$

$$k_{\min}(z_c) = \frac{2\pi}{\sqrt[3]{V_{\min}(z_c)}}$$

Dimension of the telescope beam

$$R_{\text{beam}}(z_c) = \frac{\theta_{\text{FWHM}}}{2\sqrt{2\ln 2}} r(z_c)$$

$$k_{\max}(z_c) = \frac{2\pi}{R_{\text{beam}}(z_c)}$$

FORECASTING - POWER SPECTRUM MODEL

$$P_{21}(z, k, \mu) = \overline{T}_{b}^{2}(z) \left[b_{HI}(z) + f_{CDM+b}(z, k) \mu^{2} \right]^{2} P_{CDM+b}(z, k) + P_{SN}(z)$$

Nuisance parameters (either computed from theory or sampled)

FORECASTING - MIMICKING REALISTIC OBSERVATIONS

To mimic realistic observations we add two factors:

Gaussian beam smoothing

$$\tilde{B}(z, k, \mu) = \exp\left[\frac{-k^2 R_{\text{beam}}^2(z)(1 - \mu^2)}{2}\right]$$

Suppresses the power on small scales

Alcock-Paczynski (AP) effect

$$\alpha_{\perp}(z) = \frac{D_A(z)}{D_A^{\text{fid}}(z)}$$
 and $\alpha_{\parallel}(z) = \frac{H^{\text{fid}}(z)}{H(z)}$

$$q = \frac{k}{\alpha_{\perp}} \sqrt{1 + \mu^2 \left(\frac{\alpha_{\perp}^2}{\alpha_{\parallel}^2} - 1\right)} \qquad \nu = \frac{\alpha_{\perp} \mu}{\alpha_{\parallel} \sqrt{1 + \mu^2 \left(\frac{\alpha_{\perp}^2}{\alpha_{\parallel}^2} - 1\right)}}$$

FORECASTING - BUILDING THE SYNTHETIC DATA SETS - ERRORS

21cm IM variance

Instrument noise

$$\sigma_{21}(z,k,\mu) = \frac{\hat{P}_{21}(z,k,\mu) + P_{N}(z)}{N_{\text{modes}}(z,k,\mu)} \qquad P_{N}(z) = \frac{T_{\text{sys}}^{2} 4\pi f_{\text{sky}}}{N_{\text{dish}} t_{\text{obs}} \delta \nu} \frac{V_{\text{bin}}(z)}{\Omega_{\text{sur}}}$$

cross-correlation variance

$$\sigma_{21,g}(z,k) = \frac{1}{\sqrt{2N_{\text{modes}}(z,k)}} \sqrt{\hat{P}_{21,g}^2(z,k) + \left(\hat{P}_{21}(z,k) + P_{\text{N}}(z)\right) \left(\hat{P}_{\text{g}}(z,k) + \frac{1}{\overline{n}_{\text{g}}}(z)\right)}$$

Number of modes per k bin

$$N_{
m modes}(z,k) = rac{k^2 \Delta k(z_c)}{4\pi^2} V_{
m bin}(z_c)$$

FORECASTING - FULL POWER SPECTRUM MODEL

Adding everything you get the **21cm** (observed) power spectrum model and similar for the cross

$$\hat{P}_{21}(z, k, \mu) = \frac{1}{\alpha_{\perp}^2 \alpha_{\parallel}} \tilde{B}^2(z, q, \nu) P_{21}(z, q, \nu) + P_{N}(z)$$

> We can decompose the power spectrum using Legendre polynomials

$$\hat{P}_{X,\ell}(z,k) = \frac{(2\ell+1)}{2} \int_{-1}^{1} d\mu \, \mathcal{L}_{\ell}(\mu) \hat{P}_{X}(z,k,\mu) \qquad \begin{array}{c} \text{Power spectrum} \\ \text{multipoles} \end{array}$$

$$C_{\ell,\ell'}(z,k) = \frac{(2\ell+1)(2\ell'+1)}{2} \int_{-1}^{1} d\mu \, \mathcal{L}_{\ell}(\mu) \, \mathcal{L}_{\ell'}(\mu) \, \sigma^2(z,k,\mu)$$
 Multipoles covariance

FORECASTING - DATA ANALYSIS

We consider three values for $\Sigma m_{\nu} = 0.06$, 0.1, 0.4 eV, meaning that in total we have 9 data sets (3 data sets for each of the 21cm IM auto-power spectrum, the SKAO×DESI cross-correlation and the SKAO×Euclid cross-correlation)

➤ Additionally, we combine our mock data sets with Planck 2018.

Gaussian likelihood

$$-\ln\left[\mathcal{L}\right] = rac{1}{2}\sum_{z}\Delta\Theta(z)^{\mathrm{T}}C^{-1}(z)\Delta\Theta(z)$$

$$\Delta\Theta(z) = \Theta^{\mathrm{th}}(z) - \Theta^{\mathrm{obs}}(z)$$

LIKELIHOOD FUNCTION

- ➤ We built on Maria's works [Berti+2021, Berti+2022, Berti+2023] and built a *Gaussian likelihood code* fully integrated with the MCMC sampler **Cobaya**.
- ➤ This likelihood code, called **topk**, will be made *publicly available* on Maria's GitHub page at **github.com/mberti94**
- The likelihood code can handle the computation of:
- 21cm IM power spectrum multipoles
- 21cm and galaxies cross-correlation power spectrum multipoles

FORECASTING - RESULTS

FORECASTING - RESULTS

Likelihoods	$\Sigma m_{ u}^{ m fid} = 0.06{ m eV}$	$\Sigma m_{ u}^{ m fid} = 0.1{ m eV}$	$\Sigma m_{ u}^{ m fid} = 0.4{ m eV}$
$\hat{P}_0 + \hat{P}_2$	< 0.287	< 0.317	$0.41^{+0.11}_{-0.14}$
+ nuisances	< 0.425	< 0.452	$0.34^{+0.16}_{-0.14}$
Planck 2018			
$+\;\hat{P}_0+\hat{P}_2$	< 0.105	0.098 ± 0.022	0.398 ± 0.018
+ nuisances	< 0.126	< 0.151	0.401 ± 0.034
Planck 2018			
$+~\hat{P}_{21,\mathrm{g}}^{\mathrm{DESI}}$	< 0.116	$0.099^{+0.020}_{-0.033}$	$0.396^{+0.023}_{-0.026}$
+ nuisances	< 0.155	< 0.177	0.349 ± 0.060
Planck 2018			
$+~\hat{P}^{ m Euclid}_{21,{ m g}}$	< 0.117	$0.100^{+0.021}_{-0.032}$	$0.397^{+0.023}_{-0.026}$
+ nuisances	< 0.156	< 0.180	0.343 ± 0.062

- rianglerighter Cross-correlation data alone doesn't hold enough constraining power to improve the state of the art $\sum m_{\nu}$.
- When combined with complementary
 CMB data, gives constraints
 comparable to the ones obtained with
 auto-power.

[GA et al., arxiv:2504.18625]

Thank you for your attention!

Extra slides

THE 21CM POWER SPECTRUM

 $ightharpoonup \overline{T}_b$ is the averaged brightness temperature of HI, can be computed as

$$\bar{T}_{b}(z) = 180 \ \Omega_{HI}(z) \frac{h H_0}{H(z)} (1+z)^2 \text{mK}$$
 [Battye+2013]

 \blacktriangleright The HI density $\Omega_{\rm HI}$ has mild redshift evolution

$$\Omega_{\rm HI}(z) = 4. \times 10^{-4} (1+z)^{0.6}$$

[Chrighton + 2015]

THE 21CM POWER SPECTRUM

➤ We have no analytical models for HI bias and shot-noise, therefore we interpolate results from *hydrodynamical simulations*

z	0	1	2	3	4	5
$b_{ m HI}$	0.84	1.49	2.03	2.56	2.82	3.18
$ \begin{array}{ c c }\hline P_{\rm HI}^{\rm SN} \\ [(h^{-1}{\rm Mpc})^3] \end{array} $	104	124	65	39	14	7

[Villaescusa-Navarro+2018]

The growth rate f(z) and the matter power spectrum $P_m(z,k)$ are computed with a Boltzmann solver (CAMB) or an emulator. For massive neutrinos they are computed neglecting the contributions of neutrinos.