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CosmoFONDUE in 
Stückelberg’s footsteps
• I couldn’t figure out 

how to incorporate 
the Stückelberg trick 
into my talk…



Motivation
• Using large-scale structure, we can learn about

• Inflation (or, which mechanism generated seeds of 
structure ?)

• Dark Energy and Gravity (is General Relativity 
correct ?)

• Dark Matter (does it cluster as expected ?)

• the formation history of galaxies, clusters, and the 
IGM

• Uniquely broad set of science opportunities!

• As first demonstrated by 2dF and SDSS



Motivation

• Inflation: reconstruct the properties of the initial 
conditions, and look for gravitational waves

• Dark Energy and Gravity: the growth of 
structure depends sensitively on the expansion 
history of the Universe, and the nature of 
gravity 

• Dark Matter: how “cold” is cold dark matter ? 
What is the sum of neutrino masses ?

D
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0 = 4⇡G ⇢̄DGrowth equation:
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Challenge: massive, highly 
nonlinear data set

• State of the art galaxy 
redshift surveys collect 
sky positions and 
redshifts for millions of 
galaxies

• Covering a substantial 
fraction of the 
observable universe

• DESI, Euclid up and 
running

Hubble UDF SDSS / M. Blanton



Unlike the CMB, every data 
point is nonlinear!

Perseus cluster seen by Euclid Planck

Challenge: massive, highly 
nonlinear data set



Outline

I. Probes

II. Signals

III. Methods



I. Probes

• Galaxies:

• Number counts (clustering)

• Shapes (weak gravitational lensing & intrinsic 
alignments)

• Diffuse gas, line intensity mapping                
=> Matteo Viel’s talk

• GW sources => Michele Maggiore’s talk

Precise sky position
Precise or poor redshift

(Often) poor sky position
Precise redshift

(Often) poor sky position
Precise distance



Galaxy clustering
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Galaxy clustering
• Galaxy surveys come in two variants:

• Photometric surveys perform imaging only; 
redshift estimate using “colors” (different 
filters), accurate at Δz ~ 0.03 - 0.1

• Lose many line-of-sight modes

• Lose higher-order statistics (central limit 
theorem)

• Spectroscopic surveys additionally obtain a 
spectrum for each galaxy => precise redshift

• Significantly higher cost per galaxy
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Galaxy shapes
• Beyond the point source limit: 

measure second moments of 
galaxy image on the sky

• Now have a set of symmetric 
2-tensors on the sky:

• Tensor observable: E/B 
decomposition, …

• Again, can have projected 
(more common) or 3D cases
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II. Signals



Galaxy clustering classic 
probes: BAO

• Standing acoustic wave in pre-
recombination baryon-photon 
fluid, with known period: sound 
horizon rs

• Measure angular and redshift-
space scale in 3D galaxy 
clustering -> distance dA and 
Hubble parameter relative to rs

• BAO reconstruction approach 
to increase contrast of BAO 
feature (undo nonlinear 
damping)

DESI collaboration

Baryon acoustic oscillation



Galaxy clustering classic 
probes: RSD

• Observed galaxy positions xobs are 
given by position on the sky and 
measured redshift — not “true” 
positions

• Main effect: Doppler shift to redshift 
due to peculiar velocity of galaxy:

• Equivalence principle (EP): galaxy 
velocity = matter fluid velocity on 
large scales

• Probes time derivative of growth 
factor
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xobs = x+
ug · n̂
aH

n̂

Redshift-space distortions
Chapter 11 • Probes of structure: tracers 301

FIGURE 11.3 Redshift-space distortions, in the linear/large-scale (left) and nonlinear/small-scale variants (right), both
considering the case of a central overdensity denoted by the filled circle. The observer is assumed to be far away
below the figure, so that the line-of-sight direction n̂ is vertical. In each case, a contour of constant density (dashed
lines), which is circular in real space, is distorted in redshift space (solid lines) so that it looks asymmetric. Wide
arrows indicate the direction of the velocity flow, while arrows with dashed lines indicate the displacement due to
the line-of-sight velocity. In the nonlinear case, as the absolute scales are smaller, a point on the “far side” (top) of
the overdensity is mapped onto a point on the opposite side.

11.1.2 Redshift-space distortions

Before we begin computing the galaxy power spectrum, let us think about what we qualita-
tively expect the effect of peculiar velocities on galaxy clustering to be. Fig. 11.3 illustrates
the distortions that appear in redshift space. The left panel shows the large-scale case we
are mostly interested in here. A large-scale overdense region, towards which surround-
ing galaxies are falling, appears squashed in redshift space: the galaxies closest to us are
moving toward the center of the overdense region and hence away from us, so they ap-
pear farther from us (and closer to the center of the overdense region) than they actually
are. Similarly, galaxies on the “other side” of the perturbation are moving toward us, so
they appear closer to us than they actually are. The overall effect is to induce an apparent
anisotropy in an otherwise circular overdensity. Since moving galaxies towards each other
increases their number density (the effect captured by the Jacobian introduced in the pre-
vious section), we actually expect the clustering in redshift space to be stronger than in real
space.

As we move to smaller, nonlinear scales, the nature of the redshift-space distortion
changes. Velocities on small scales are typically a bit larger, but more importantly, the
displacement into redshift space, u!/aH , becomes much larger compared to the distance
separating the two galaxies which we are correlating, since clustering on small scales by
definition means that we are considering pairs of galaxies that are closer together. The re-
sult is shown in the right panel of Fig. 11.3. The observed contour of constant density is
very elongated along the line of sight. Moreover, the true and observed positions of the



Beyond linear theory: 
making use of EP

time

space

• We cannot predict galaxy 
positions from first principles; 
capture uncertainties in effective 
bias coefficients (EFT)

• Leading gravitational observable 
is tidal field          which includes 
density

• Along entire trajectory of forming 
galaxy

• Many free parameters, but also 
have EP-protected terms 
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Desjacques, Jeong, FS (2017)



Current state: power 
spectrum + bispectrum

• Protected displacement terms in 
galaxy density start at second 
order

• These probe growth factor (or σ8)

• Appear at leading order in galaxy 
3-pt function = bispectrum

• Current SOTA 1-loop Pk+Bk (up 
to 4th order in perturbations)

Figure 8. As Fig. 2, but for an analysis with ns fixed to the Planck best-fit value.

shift with respect to the P` + Q0+BAO+B0 analysis. In particular, we find ⌦m = 0.3156+0.0094
�0.0099,

H0 = 68.21+0.85
�0.86 km s�1Mpc�1, �8 = 0.7262+0.032

�0.036 (cf. Tab. 1). Further investigation reveals that
certain elements of the P` �B` correlation matrix are enhanced relative to the linear theory Gaus-
sian approximation, which may be a result of the non-trivial survey window function geometry, or
a limitation of the (approximate) Patchy simulations. Our study suggests that it is this correlation
that produces the apparent ⇠ 0.5� shift in the ⌦m � �8 plane. We leave further investigation of
this e↵ect for future work.

We note that the addition of the bispectrum multipoles leads to a significantly more Gaussian
posterior for �8: we find �8 = 0.736± 0.033. In addition, our result is now in greater harmony with
the Planck 2018 ⇤CDM constraint �8 = 0.811 ± 0.006 [77]. We close by noting that our final �8

result is nominally the strongest of all previously reported full-shape measurements based on the
EFTofLSS.

– 25 –
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�(H0)/H0 ⇡ 1.2%; �(�8)/�8 ⇡ 4.5%

Ivanov, Philcox, et al, 2023
D’Amico et al 2023



Probing inflation



• Fluctuations generated at some point know 
nothing about larger-scale perturbations that left 
the horizon long ago

• long-wavelength perturbation just corresponds to 
different “wall time” - age of the local patch

Single-field inflation

Pajer, FS, Zaldarriaga (2013)



• Values of other fields distinguish different patches 

• Small-scale perturbations know about long-
wavelength perturbations

• <=> Primordial non-Gaussianity of local type is 
generated

Multi-field inflation

�2

�1

Pajer, FS, Zaldarriaga (2013)



From initial conditions 
to galaxies

• In multi-field inflation, 
amplitude of initial 
conditions depends on 
large-scale potential

local primordial non-
Gaussianity



Galaxy clustering in 
multi-field inflation

• Galaxy density now follows the potential, in 
addition to matter:

• Coefficient quantifies the change in galaxy 
density when changing amplitude of initial 
fluctuations:

bNG =
@ ln n̄g

@ ln�8

Also, for the standard 
local bias: b =

@ ln n̄g

@ ln ⇢̄m

ng(x) = n̄g [b �m(x) + bNG �(x)]



Galaxy clustering in 
multi-field inflation

⇠h(r) / 4b10b01fNLh�L(1)�(2)i

Dalal et al., 2008

• Smoking-gun signature: 
clustering increases 
towards large scales

• Probing highest energy 
physics with galaxies 
on the largest scales

• Current constraints:

FS, Jeong, Desjacques, 2012
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include

Pg(k) =


b2 + 2b bNGfNL

A

k2

�
Pm(k)
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!fNL(CMB) → 3

!fNL(LSS) → 15



Galaxy clustering in 
multi-field inflation

⇠h(r) / 4b10b01fNLh�L(1)�(2)i

Dalal et al., 2008

• More generally: galaxy 
clustering probes 
squeezed-limit of n-
point functions of 
primordial curvature 
perturbations

• Cf. cosmological 
colliders

FS, Jeong, Desjacques, 2012
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include
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FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our expression for the bias dependence on fNL

defined in Eq. (9).

note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We
have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
DM particles. We have checked, however, that using the
halo auto-spectra to compute bias gives consistent re-
sults as the cross-spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in figure Fig. 7.

As can be seen, we numerically confirm the form of
the predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individ-
ual simulations plotted in Fig. 8 is large. We therefore
attempt to improve the statistics on the comparison by

FIG. 8: Ratio of the bias shift ∆b measured from our simula-
tions to that predicted by Eqn. (9), using δc = 1.686. Biases
were computed from cross-spectra measured on 28 simulations
with 5 various fNL (-500, -100, 100, 500), 3 various redshifts
(z = 0, 0.5, 1) and 5 halo mass bins. Note that at higher
k, nonlinear evolution also generates scale dependence in the
bias [78].

combining the bias measurements from multiple simula-
tions. Figure 8 plots the average ratio between the bias
measured in our simulations and our analytic prediction
Eqn. (9), using δc = 1.686 as predicted from the spherical
collapse model [79]. In computing the average plotted in
this figure, we used a uniform weighting across the dif-
ferent simulations, redshifts, and mass bins. Alternative
weightings can shift the results by ∼ 10%, so we conser-
vatively estimate the systematic error in our comparison
to be 20%. The agreement between our numerical sim-
ulation results and our predicted bias scale-dependence,
Eqn. (9), is excellent and perhaps surprising. Naively,
we might expect a somewhat larger collapse threshold δc
to apply, considering the ellipsoidal rather than spherical
nature of the collapse of halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulae for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to con-
strain cosmological parameters, in particular dark energy
parameters, by exploiting the exponential sensitivity of
the galaxy cluster abundance on cosmology. Similarly, a
major goal for upcoming redshift surveys is to constrain
dark energy by localizing baryonic acoustic oscillation
(BAO) features in the galaxy power spectrum at mul-
tiple redshifts. Examples of upcoming surveys include

Pg(k) =


b2 + 2b bNGfNL

A

k2

�
Pm(k)
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FIG. 1. Cartoon of the galaxy four-point correlation functions (4PCFs) considered in this work. In the left panel, we show the
4PCF, ⇣(r1, r2, r3), which depends on the separation vectors of three secondary galaxies from a given primary. The right panel
shows the parity-inverted 4PCF, P [⇣(r1, r2, r3)], which corresponds to replacing ri with �ri. Unlike for the 2PCF and 3PCF,
the two configurations cannot be related by a rotation. The parity-even 4PCF is a sum of the two geometries (which have the
same side-lengths and relative angles), whilst the parity-odd 4PCF is a di↵erence. In this work, the 4PCF is given as a function
of three lengths (r1, r2, and r3) and three internal angles (fixing the angle of the ri vectors with the respect to the primary
galaxy). The latter are represented by their harmonic-space momenta, `1, `2 and `3, with odd-parity 4PCFs corresponding to
odd `1 + `2 + `3. Assuming standard ⇤CDM physics, the two correlators shown in the figure should be equivalent, thus the
expectation value of the parity-odd 4PCF is zero.

2PCF) is insensitive to parity, since the action of P is equivalent to a rotation, under which the statistic is invariant. In
three-dimensions, the isotropic N -point correlation functions (NPCFs) are parity-sensitive only if N > 3; this applies
also to the CMB, since the intrinsic fluctuations are the projection of a three-dimensional quantity. The simplest
statistic with which to probe scalar parity-violation is thus the 4PCF, as pointed out in [23, 38, 39]. A cartoon of this
is shown in Fig. 1.1

Whilst a number of works have considered the 4PCF of the CMB [e.g., 44, 45] including its parity-odd contributions
[38, 46] (though only theoretically), the large scale structure (LSS) equivalent has been rarely explored. Given the
influx of spectroscopic data expected in the next decade from DESI [47], Euclid [48], and Rubin [49], galaxy surveys
seem to be a natural arena in which to hunt for parity-violating interactions, allowing constraints to exceed the CMB
cosmic variance limit. Historically, use of the higher-point galaxy correlation functions has been hampered by the
computational resources required for their estimation; näıvely, the 4PCF requires O(N4

g ) operations to compute from
Ng galaxies. Recent works have significantly improved upon this [50, 51], with the algorithm of [51] requiring only
O(N2

g ) operations. This allows the 4PCF of current galaxy surveys to be computed in ⇠ 30 CPU-hours. The approach
proceeds by first projecting the correlation function into a suitable angular basis [52]; thence, the integrals decouple
and the 4PCF may be computed by summing over pairs of galaxies. This naturally generalizes to higher-dimensions,
as well as to anisotropic correlators [53]. As first pointed out in [52] there is a natural separation of the parity-even
and parity-odd isotropic basis functions. The even-parity component can be used to place constraints on gravitational
non-Gaussianity from a hitherto unexplored statistic [54]. The use of the parity-odd basis to measure parity violation
in the galaxy four-point correlation was first proposed in [39] and is carried out in this work (see also [23]).

There are two main ways in which parity-violation can be probed using the galaxy 4PCF. Firstly, one may place
constraints on the amplitudes of specific physical models given their associated theoretical predictions. This is an
approach oft-used in the analysis of CMB 3- and 4-point functions, for example in non-Gaussianity studies, which
typically exploit separability of the underlying theoretical templates for significant computational gain [e.g., 55]. This
approach was also suggested in [23, 46, 56], and allows for targeted constraints on specific models of early-Universe
particle exchange, via a search for their specific isotropy-violating signatures. An alternative method would be to first
measure the full galaxy 4PCF in some set of bins, then perform a blind test, looking for the signatures of any physical
model (and systematic e↵ects). This approach is possible since the parity-odd 4PCF receives no contribution in ⇤CDM,
including from general relativistic and baryonic e↵ects. Given the multitude of possible models for parity-violation,
we will principally adopt the second strategy in this work, though we demonstrate also the first, by placing constraints
on a specific model involving Chern-Simons terms in the inflationary Lagrangian. Analysis using the galaxy 4PCF
comes with its complexities, however. In particular, the high-dimensionality of the statistic prohibits conventional

1 Large scale structure correlators are sensitive also to redshift-space distortions [40, 41], giving dependence of the statistic on line-of-sight
velocities [42]. This enables vector-type parity-violation to be probed in the 3PCF [43], though it requires careful modelling of galaxy
velocities.



Galaxy shapes: weak 
lensing
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galaxy shapes
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of deflection angle: shear
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• Assuming that intrinsic 
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scales!
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FIGURE 13.2 Left panel: top view of a lensing system. Light emitted from the source (top) reaches the observer at
the bottom following a trajectory that is being deflected by the gravitational field of the lens. From the observer’s
point of view, the apparent position of the source is in the direction of the dashed arrow, further away from the
lens than the true source. Right panel: Appearance of the system on the sky, assuming that the lens is cylindrically
symmetric around the line of sight. Each point of the source is displaced outward radially. This distorts the source
image that would be observed in the absence of lensing into a tangential arc.

idence for cold dark matter in this book, the bullet cluster is another compelling piece
simply because it offers such a clear visualization.

For cosmology, the most important aspect of gravitational lensing is weak lensing,
wherein the shapes of distant galaxies are slightly distorted by intervening foreground mat-
ter overdensities; that is, it is the same effect as shown in Fig. 13.2, but with much smaller
amplitude. One application of this is to use background galaxies to infer the mass of indi-
vidual galaxy clusters (dating back to at least Tyson et al., 1990). As argued in Sect. 12.5, we
can use the abundance of galaxy clusters as a sensitive probe of cosmology, but only if we
have a precise calibration of their mass. Weak lensing is able to provide just that. We will
briefly describe how this works in Sect. 13.5.3.

In this chapter, we will mostly be interested in weak lensing by the large-scale matter
distribution structure in the universe, rather than by a single identifiable lens such as a
cluster. Inferring the distribution of the dark matter, i.e. making a mass map is only one
part of the goal. We are most interested in statistics such as the correlation function or its
Fourier transform, the power spectrum. Indeed, we will derive how the power spectrum of
the lensing map measures the underlying (nonlinear) matter power spectrum, and how its
cross-correlation with galaxy number counts provides valuable constraints on bias.

13.2 Photon geodesics
Yet again, the effect of gravitational lensing on the observed photons is an application
of the Boltzmann equation. Since we can neglect scattering and absorption in the late
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FIGURE 13.8 Measurement of the shear correlation functions from the first year of data from the Dark Energy Survey.
This includes the complete source galaxy sample, not split up by photometric redshift. The solid line shows the
prediction for the best-fitting !CDM model (including intrinsic alignments and other effects). From Troxel et al.
(2018).

where

ξ+,!(θ) =
∫

ldl

2π
J0,4(lθ)CEE(l) (13.58)

are the “plus-” and “minus-” type shear correlation functions, which are both uniquely
determined by CEE(l) = Cκκ(l). You can also show that the cross-correlation function be-
tween the two shear components vanishes: ∓γt (0)γ×(θ)〉 = 0 (this is quite simple when
aligning θ with the x-axis again). All of these relations really follow from the fact that the
ellipticity field is composed purely of E-modes; if present, B-modes also contribute to ξ+
and ξ!, but with a minus sign in the latter, as you can show in Exercise 13.10.

Fig. 13.8 shows a measurement from the Dark Energy Survey. Clearly, lensing is detected
at very high signal-to-noise, especially on small scales (toward the left in the figure). The
measurement is entirely compatible with the !CDM prediction. The actual cosmology
constraints were obtained from a larger data vector: the source galaxy sample was split
into four subsamples based on their photometric redshift estimates. Then, all shape auto-
and cross-correlations between these different samples were used, yielding more informa-
tion on the expansion history and dark energy equation of state.

13.5.3 Shear cross-correlations

A very important application of lensing shear is its cross-correlation with other cosmolog-
ical fields, in particular the galaxy density. So let us consider the projected galaxy density
following Eq. (11.39),

'g(θ) =
∫ ∞

0
d(Wg(())g (x = θ(,η = η0 ! () , (13.59)

DES Collaboration (Y1)
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Figure 2. The angular auto-power spectrum of intrinsic shapes (without accounting for weak grav-
itational lensing) for our fiducial choice of bI

NG
and A2 = +10 (left) and for A2 = →10 (right). The

Gaussian case is shown in solid black for three redshifts, z = {0.5, 1, 1.5} from top to bottom. We
show the case with anisotropic non-Gaussianity at the same redshifts (dashed).

auto-power spectrum of the intrinsic component of the shapes:

CI(l) =
2

π

(l → 2)!

(l + 2)!

∫

k2dk Pm(k)|F I
l (k)|2 (4.13)

F I
l (k) =

∫

dz
dNred

dz

[

bI1 + 3bINGA2M−1(k, z)
] D(z)

D(0)

[

(1 + ∂2x)
2 x2jl(x)

]

x=kχ(z)

=
(l + 2)!

(l → 2)!

∫

dz
dNred

dz

[

bI1 + 3bINGA2M−1(k, z)
] D(z)

D(0)

[

jl(x)

x2

]

x=kχ(z)

. (4.14)

Here, Pm(k) is the matter power spectrum at z = 0, and M(k, z) is defined in Eq. (3.13).
jl denotes the spherical Bessel function of order l. Note that no B-modes are generated
by linear scalar contributions. Also, by symmetry the lowest non-zero multipole of shape
correlations is the quadrupole l = 2.

Similarly, we can write down the cross-correlation between galaxy overdensity and shape
E-modes (again, only the intrinsic part). This is the multipole space version of the density-
tangential shape correlation function in real space, and reads

CnI(l) =
2

π

√

(l → 2)!

(l + 2)!

∫

k2dk Pm(k)F I
l (k)F

n
l (k) (4.15)

Fn
l (k) =

∫

dz
dNn

dz

D(z)

D(0)

[

bn1 +
1

2
bnNGA0M−1(k, z)

]

jl(x)
∣

∣

∣

x=kχ(z)
. (4.16)

The clustering auto-power spectrum, on the other hand, is simply given by

Cnn(l) =
2

π

∫

k2dk Pm(k)|Fn
l (k)|

2 . (4.17)

Eqs. (4.13)–(4.17) are valid on the full sky.

– 13 –

• Example A: probe anisotropic 
squeezed limit of curvature 
bispectrum => spinning 
particles during inflation
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FIG. 1. A diagram of the parity-odd power spectrum sourced
by the parity-odd trispectrum.

This represents a pure longitudinal scalar mode, i.e.
helicity-0 mode in terms of the helicity basis (Eqs. 23–
25) at full order. From Eq. (27), the two-point correla-
tions involving this operator contribute only to a helicity-
0 power spectrum under statistical isotropy, which is
parity-insensitive. Therefore, P

(11), P
(13) and P

(h.d) in
Eq. (51) are all parity-insensitive5. Thus, we only need
to focus on P

(22), which consists of the following operator
spectra with the loop integral:

P
(ω)

→
→ cq,pcq→,p→P

(ω,→)

O(q,p)O(q→,p→) , (53)

with

P
(ω,→)

OO→ ↑
∫

q1,··· ,q4

(2ω)3εD

k→q12
(2ω)3εD

k+q34

↓ K
(ω,→)

OO→ (q1,q2,q3,q4)T
(→)

ε (q1,q2,q3,q4), (54)

where T
(→)

ε is the underlying parity-odd matter trispec-
trum (Eq. 7), and we have defined the projected kernel:

K
(ω,s)
OO→ (q1,q2,q3,q4)

↑
[
!(ω,s)

ij,kl (k̂)
]↑ [

K
O

ij

](2)

(q1,q2)
[
K

O
→

kl

](2)

(q3,q4). (55)

We show a diagrammatic representation of the parity-odd
power spectrum sourced by the parity-odd trispectrum
through the (22)-type loop integral in Fig. 1. Note that
when deriving Eq. (54), we used the fact that the parity-
odd projection is orthogonal to the parity-even statistics
(such as the Gaussian part and parity-even non-Gaussian
components) contained in the 4th-order moment of ε

(1),
i.e., they vanish after the loop integration due to their
transformation properties under parity qi ↔ ↗qi.

We can further simplify P
(22) by using the degeneracies

among the second-order kernels (Eqs. 46–49) derived in
Ref. [17]. The detailed calculations are provided in Ap-
pendix A, but briefly, the helicity-1 component of the
parity-odd spectrum depends only on the combination
c2,1 + c2,2 + c2,3, while the helicity-2 component depends
only on c2,1 + c2,2 and c2,3 as independent bias coe”-
cients. Therefore, by appropriately redefining the linear
combinations of the second-generation operators, we ob-
tain the following simplified expressions for each helicity
component:

P
(1)

→
= c

2

AP
(1,→)

AA , (56)

P
(2)

→
= c

2

AP
(2,→)

AA + 2cAcBP
(2,→)

(AB)
+ c

2

BP
(2,→)

BB , (57)

where cA ↑ c2,1 + c2,2 + c2,3, cB ↑ c2,3, and we have
introduced the new operator labels:

Aij ↑ O(2,2)
ij , Bij ↑ O(2,3)

ij ↗ O(2,2)
ij . (58)

The explicit forms of the corresponding Fourier-space
kernels are given by: for helicity ϑ = 1,

K
(1,→)

AA (q1,q2,q3,q4) =
i

4

[
k̂ · (q̂1 ↓ q̂3)

] [
µk1 ↗ q1

q2

µk2

] [
µk3 ↗ q3

q4

µk4

]
, (59)

and for ϑ = 2,

K
(2,→)

AA (q1,q2,q3,q4) =
i

2

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

q1

q2

µ12

q3

q4

µ34, (60)

K
(2,→)

(AB)
(q1,q2,q3,q4) = ↗ i

8

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

k
2

q2q4

[
q1

q4

µ12 +
q3

q2

µ34

]
, (61)

K
(2,→)

BB (q1,q2,q3,q4) =
i

8

[
k̂ · (q̂1 ↓ q̂3)

]
(µ13 ↗ µk1µk3)

k
4

q
2

2
q
2

4

, (62)

5 P
(1n)
ij,kl (n → 1) is parity-insensitive in general.
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FIG. 7. Comparison between the measured parity-odd power spectra of halo intrinsic alignments for di!erent initial conditions
and the corresponding EFT best-fit models (solid lines) defined in Eq. (92): (b(1)→ )2 = 0.12 and (b(2)→ )2 = 0.33. The left (right)
panel shows the helicity-1 (helicity-2) component of the power spectrum. The power spectra are measured at z = 1 from halo
samples with 1→ 1013 < Mh < 4→ 1013 h→1M↑.

2. PNG bias: Di!erent helicities

Since, as shown in Eq. (92), the parity-odd power spec-
trum is proportional to the product of the underlying
parity-violating amplitude Agauge and the PNG-induced

bias (b(ω)

→
)2, prior knowledge of the PNG-induced bias is

required to directly constrain Agauge from measurements.
This situation is analogous to the well-known degener-
acy between the local-type PNG parameter fNL and the
PNG-induced bias bε in the scale-dependent bias of the
galaxy clustering power spectrum [41]. Therefore, we
here derive fitting formulae that relate the PNG-induced

biases b
(ω)

→
to the linear (Gaussian) shape bias bK .

First, the left panel of Fig. 8 shows the relation be-
tween the parity-violating PNG-induced biases for the
two helicities ω = 1, 2. They show a clear linear relation,
which is well described by

(
b
(2)

→

)2

= ε

(
b
(1)

→

)2

, (123)

with the best-fit value

ε = 2.70 ± 0.08. (124)

Note that b
(ω)

→
are only defined up to a sign, since they al-

ways enter quadratically in the statistics. We found that
adding a constant or quadratic term does not improve
the quality of the fit. The linear relation between the bi-
ases for di!erent helicities indicates that the response of
the halo shape to anisotropic modulations of local power
spectrum is essentially the same for both helicities, apart
from an overall multiplicative factor (i.e., the slope), re-
gardless of the specific halo sample.

On the other hand, the fact that the slope deviates
from unity is nontrivial and is generally expected to
be model-dependent. In particular, for the U(1)-gauge
model considered in this work, a renormalization calcula-
tion presented in Appendix C shows that the cuto!-scale
dependence di!ers between helicities exactly by a factor
two (see Eqs. C17 and C19):

S(2,→)

AA (”, ”↑) = 2S(1,→)

AA (”, ”↑). (125)

Based on this, while one might naively expect the bias
parameters to satisfy

(
b
(2)

→

)2

= 2
(
b
(1)

→

)2

, (126)

the measured slope ε deviates significantly from this the-
oretical expectation. Although the precise physical origin
of this discrepancy remains unclear, it suggests the pres-
ence of additional e!ects not captured at leading order.
[TK: Or does the relation Eq. (125) not tell us anything?]
[FS: Basically, this relation says that the divergent con-
tributions to both counterterms are related by a factor of
2, but the finite part can di!er. Indeed, it’s interesting
that the relation appears to be universal.]

We note that this result is based on halo shapes defined
using the reduced inertia tensor, which gives more weight
to particles in the inner regions of the halo. Interestingly,
even when we use the standard (unweighted) inertia ten-
sor instead, the slope parameter ε remains nearly un-
changed (consistent within the 1ϑ level; see Appendix F).
This suggests that both the inner and outer regions of the
halo respond similarly to modulations of the local power
spectrum.



Galaxies as grav. wave 
detectors

• Intrinsic alignment ~ galaxies aligning with 
large-scale tidal fields

• GW induce a local tidal field, in addition to 
acting as gravitational lenses

• Large galaxy surveys can be used to search 
for inflationary GW, via odd-parity (B-mode) 
component of shape correlations

FS, Pajer, Zaldarriaga, 2013
FS, Jeong, 2012b



• Tidal effect dominates 
over lensing

• Very small signal - 
difficult to measure 
even for Euclid / LSST

• Still, one of the few 
possible ways to 
independently confirm 
CMB searches

r = 0.1

Chisari, Dvorkin, Schmidt ‘14

Galaxies as grav. wave 
detectors



Why is intrinsic alignment 
so large for GW ?

• Actually, the correct 
question is: why is the 
GW lensing contribution so 
small ?

• Cancelation of lensing 
effect along the line of 
sight because GW 
propagate

Scalar 
perturbations

GW



Galaxy shapes: intrinsic 
alignments

Shape 
statistic:

Spinning 
particles

Gravitational 
waves 

Parity 
violation

EE ✅ ✅ ❌

EB ❌ ❌ ✅

BB ❌ ✅ ❌

Tensor observable 
=> non-degenerate 
signals!

Especially when 
combined with 
galaxy clustering



III. Methods

(I realize I am running out of time at this point)



Beyond classical n-point 
functions

• Much excitement in LSS about exploring 
information beyond 2- and 3-pt statistics, e.g.

• Machine-learned compressions, coupled with 
simulation-based inference or emulators

• Field-level inference: strictly optimal Bayesian 
inference, explicitly inferring initial 
conditions of observed universe



Field-level inference

• Scheme:

• Discretize field on grid/lattice

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Results in samples from the joint posterior of initial conditions and 
cosmological parameters

<latexit sha1_base64="Sg+Sh0iozeJV/cbZaX1pkPno+0s="></latexit>

P (✓) /
Z

D�in P
⇣
�g
����fwd[�in, ✓]

⌘
Pprior (�in, ✓)

Pioneered by Jasche, Kitaura, Ensslin;
Mo et al



Field-level inference

• Scheme:

• Discretize field on grid/lattice (Nyquist frequency = cutoff Λ)

• Draw initial conditions from prior

• Forward-evolve using gravity

• Evaluate likelihood on data and repeat

• Challenge: even with fairly coarse resolution, have to sample 
million(s) of parameters

• Key: Hamiltonian Monte Carlo

<latexit sha1_base64="Sg+Sh0iozeJV/cbZaX1pkPno+0s="></latexit>

P (✓) /
Z
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⇣
�g
����fwd[�in, ✓]

⌘
Pprior (�in, ✓)



Visualization: results from field-
level inference on mock data

https://www.mpa-garching.mpg.de/1095991/hl202405

• Slices through linear density, evolved biased (mean) field, and mock data

Julia Stadler



• First results on field-level σ8 inference 
from dark matter halos in real space

• Marginalizing over bias and 
stochastic terms

• Idea: compare field-level result with 
power spectrum + bispectrum using 
the same forward model and modes 
of the data

• Via simulation-based inference (SBI) 
using the same forward model as in 
the field-level analysis

3

SBINsim

posterior estimation

�(� |P[�obs.
g ], B[�obs.

g ])P + B�g

Nsample

posterior sampling

FBI �(� |�obs.
g )

Eq. (7)

Eq. (8)Eq. (6)Eq. (2)

Eq. (2)

�g

FIG. 1. Diagram of the two inference methods, FBI and SBI P+B. Both pipelines share the same forward model LEFTfield.

evolves all cosmological (plus auxiliary) fields up to a fi-
nite EFT cuto↵ ⇤. We choose ⇤ to be a sharp-k fil-
ter that strictly filters out all Fourier modes above the
cuto↵ [3, 36, 37]. Specifically, we implement a cubic
sharp-k filter via a Fourier grid reduction [23]. Crucially,
LEFTfield computes both O = O(ŝ) and @O/@ŝ, the
latter of which proves useful for gradient-based sampling
and field-level inference. We refer to Supplementary Ma-
terial and [22, 26, 37, 38] for LEFTfield implementa-
tion and validation. Here, the new developments with
respect to [22, 26, 37, 38] are: (1) a third-order model for
galaxy bias, improving accuracy relative to the previous
(second-order) treatment; (2) a non-uniform Fast Fourier
Transform (NUFFT [39]) for grid assignment, enhancing
numerical convergence and e�ciency relative to previous
assignment schemes; and (3) a change to kmax = ⇤/1.2,
e↵ectively reducing the analysis cuto↵ scale kmax rela-
tive to the initial conditions cuto↵ ⇤, hence mitigating
higher-derivative contributions.

Inference method I: FBI with explicit likelihood.—In
the field-level Bayesian inference (FBI) pipeline, we eval-
uate and sample from an explicit field-level likelihood
Lexpl.

FBI
, depicted in the top row of Fig. 1.

Following [40], our fiducial analyses assumes Gaussian-
ity of galaxy stochasticity and analytically marginalizes
over ✏. This leads to a Gaussian likelihood of the follow-
ing form for an observed and filtered galaxy field �obs.

g

[36, 41]:

Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
= �1

2

|k|<kmaxX

k>0

h
ln 2⇡�2

✏
(k) +

1

�2
✏
(k)

����obs.g
(k)�

X

O

bOO[↵, ŝ](k)
���
2i

.

(5)

The
P|k|<kmax

k>0
amounts to a spherical sharp-k filter

which only includes Fourier modes k up to kmax, the cut-
o↵ scale of our analyses. We expand

P
O
bOO to third

order in the galaxy bias operators O and further analyti-
cally marginalize over the bias coe�cients {bO} assuming
weakly informative Gaussian priors (see Supplementary
Material).

The final explicit FBI parameter space consists of
[ŝ,↵, {�✏}]. The element ŝ is a three-dimensional grid
of size [Ngrid ⇥ Ngrid ⇥ Ngrid] containing Nmode = N3

grid

modes of initial density fluctuations. To explore this
high-dimensional posterior, following [26, 42], we em-
ploy two MCMC sampling methods: Hamiltonian Monte
Carlo (HMC) [43] for ŝ—leveraging the di↵erentiability
of LEFTfield forward models—and slice sampling [44]
for [↵, {�✏}].
Inference method II: SBI P+B with implicit likeli-

hood.—Implicit-likelihood or simulation-based inference
(SBI) directly learns the posterior from simulated train-
ing data without assuming any analytical form for the
likelihood of the data vector [45]. Our SBI P+B pipeline
is depicted in the bottom row of Fig. 1, where we closely
follow the procedure detailed in [38]. We first draw
the parameters ✓ ⌘ [↵, {bO}, {�✏}] from their priors and
simulate the galaxy fields �g via Eq. (2) Eq. (5) with
LEFTfield. We then measure the power spectrum P
and bispectrum B on each simulated data realization,

h�g(k)�g(k0)i = P (k)(2⇡)3�D(k+ k0), (6a)

h�g(k1)�g(k2)�g(k3)i =
B(k1, k2, k3)(2⇡)

3�D(k1 + k2 + k3),
(6b)

following [46] (see also Eqs. (2.15–2.17) of [38]). The SBI
P+B data vector contains Nbin + Ntriangle elements up
to the same kmax used in the FBI analysis, with Nbin

linear k-bins for the power spectrum and Ntriangle trian-
gle k-configurations for the bispectrum. We choose a k
bin width of �k = 2kf , where kf ⌘ 2⇡L�1 is the fun-
damental frequency. The Nsim samples, drawn from the
joint distribution {✓, P [�g(✓)], B[�g(✓)]} this way, form
the SBI training set. We use neural posterior estimation
(NPE) [47] with masked autoregressive flows [48] from
the sbi package [49] (see Supplementary Material).
After training, we sample the estimated pos-

terior PP+B, conditioned on the power spectrum
plus bispectrum measured on the “observed” data⇥
P [�obs.

g
], B[�obs.

g
]
⇤
, [Eq. (8)]. We employ simulation-

based calibration (SBC) [50] and convergence tests to
validate the SBI posteriors (see Supplementary Mate-
rial). We note that the forward model employed here

Field-level inference: Inferring 
σ8 from rest-frame tracers

Nguyen, FS, Tucci, Reinecke, Kostić             PRL 2024, arXiv:2403.03220
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inference from dark matter halos 
in real space

• Marginalizing over bias and 
stochastic terms

• Field-level inference vs power 
spectrum + bispectrum using the 
same forward model and modes 
of the data
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assumes Gaussian noise [Eq. (5)]. Thus our bispectrum
model does not contain a contribution from non-Gaussian
(skewed) noise, or from a density-dependent noise vari-
ance. In the Supplementary Material, we compare our
fiducial SBI P+B analysis with a variant that includes
both additional stochastic contributions, but employs a

restricted bias parameter set (see Supplementary Mate-
rial). This variant matches current standard P+B anal-
yses [51, 52]. We find broad consistency between both
SBI P+B analyses.
Inference summary:—Explicitly, our target posteriors

are

PFBI

⇣
↵, {bO}, {�✏}

����obs.g

⌘
/

Z
DŝP (ŝ) Lexpl.

FBI

⇣
�obs.
g

���ŝ,↵, {bO}, {�✏}
⌘
P (↵, {bO}, {�✏}) , (7)

PP+B

⇣
↵, {bO}, {�✏}

���P [�obs.
g

], B[�obs.
g

]
⌘
/ Limpl.

P+B

⇣
P [�obs.

g
], B[�obs.

g
]
���↵, {bO}, {�✏}

⌘
P (↵, {bO}, {�✏}) , (8)

for FBI [Eq. (7)] and SBI P+B [Eq. (8)], where {bO}
consists of all bias parameters up to third order. We
explicitly list the bias parameters {bO} and the priors
P (↵, {bO}, {�✏}) in the Supplementary Material.

Results.—Our main results are shown in Fig. 2, where
we compare ↵ posteriors between FBI and SBI P+B. All
analyses recover the ground-truth ↵ = 1 within 68%CL.
Specifically, at kmax = 0.1 (0.12)hMpc�1, FBI analy-
ses constrain ↵ = 0.976 ± 0.056 (↵ = 1.013 ± 0.033),
a 5.9% (3.6%) constraint on ↵. This corresponds to a
factor of 3.5 (5.2) improvement over the SBI P+B con-
straints, which are ↵ = 1.014±0.200 (↵ = 0.872±0.170).
An increase in the improvement of field-level constraints
over low-order summary statistics with the analysis cut-
o↵ scale kmax is expected, since the information gain is
due to the nonlinearities in the forward model, whose
significance increases with wavenumber.

Both FBI and SBI P+B results show consistent pos-
teriors between the two kmax values for each inference
method. Their results are further consistent with each
other within 0.2-� (0.8-�). The consistency between the
two analyses (at both kmax) stems from their common
forward model, LEFTfield. The level of consistency
further underlines the precision of LEFTfield on these
scales.

To verify whether the above conclusions generalize,
we analyze an external sample from the publicly avail-
able Uchuu simulation. Fig. 3 shows that the answer
is a�rmative: the FBI analysis yields a factor of 1.9
(2.5) improvement over that obtained with SBI P+B.
Specifically, the FBI constraints are ↵ = 0.941 ± 0.090
(↵ = 0.993 ± 0.053) versus the ↵ = 1.018 ± 0.168
(↵ = 0.900± 0.136) constraints by SBI P+B, at kmax =
0.1 (0.12)hMpc�1, in excellent agreement within 0.4-�
(0.6-�).

In the variant SBI case, which resembles current
standard P+B analyses, the improvement factors be-
tween FBI and SBI P+B constraints on ↵ at kmax =
0.1 (0.12)hMpc�1 are 3.5 (5.2) for the SNG halo sample
and 2.3 (3.5) for the Uchuu halo sample.

Summary and discussion.—In this Letter, we have pre-
sented the first �8 constraints from field-level inference

FIG. 2. Constraints on ↵ = �8/�8,true, from the SNG sample
(see text), at kmax = [0.10, 0.12]hMpc�1. Vertical bands
indicate the 68% limits of the posteriors. The ratios of the
1-� constraints between FBI (blue) and SBI P+B (yellow)
are shown in the upper right corners.

on fully nonlinear biased tracers, specifically N-body ha-
los. Our constraints are based on the validity of the
EFTofLSS on quasilinear scales, and rigorously marginal-
ize over fully nonlinear scales.
We compare these with a simulation-based inference

based on summary statistics, namely the power spec-
trum and bispectrum. Using the same field-level for-
ward model in both analyses, we demonstrate that the
field-level approach significantly outperforms the sum-
mary statistics [Figs. 2 and 3]. Our results show that,
even on quasilinear scales, there is significant cosmologi-
cal information beyond the power spectrum and bispec-
trum. The next question is: where does this information
reside [36, 53]? In future work, we will explore whether
there are other low-dimensional summaries that could ex-

<latexit sha1_base64="R1Bpdg/acz7fTIJmsBqZynosHlg="></latexit>

= �8/�8,ground�truth
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FIG. 3. Similar to Fig. 2, but obtained from the Uchuu sample
(see text), also at kmax = [0.10, 0.12]hMpc�1.

tract this information, such as the trispectrum (4-point
function).

While we have focused on dark-matter halos here, we
will demonstrate in [33] that this conclusion holds for
simulated galaxies as well, as expected from EFT princi-
ples. Looking forward to FBI on observed data, Ref. [54]
demonstrated a successful implementation of RSD into
the LEFTfield forward model. We expect a field-level
analysis of redshift-space galaxy clustering will be able
to break the degeneracy between the growth rate f and
�8, leading to improved constraints on both parameters.
Simultaneous constraints on [f,�8] will further shed light
on dark energy and modified gravity scenarios.

We stress that we have not attempted to push our
analysis to even smaller scales, instead aiming for con-
verged posteriors at conservative scale cuts of kmax 
0.12hMpc�1 [55]. Already in this case, our results indi-
cate that field-level inference enables robust constraints

on the growth of structure, independent of the growth
rate f , at the few-percent level even within a modest vol-
ume of 8 (h�1Gpc)3. This should allow for correspond-
ingly improved constraints on cosmological parameters,
in the standard ⇤CDM as well as extended models, using
the upcoming DESI [56, 57], Euclid [58, 59] and PFS [60]
data.
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Field-level inference of 
BAO scale

• Reconstruction idea: estimate 
large-scale displacements from 
galaxy density field, then move 
galaxies back to inferred initial 
positions

• Improves error bar on BAO scale 
by up to 50%

• Can we also do this in a forward 
approach by performing joint 
field-level inference of initial 
density field and BAO scale?

4
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible
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validated. Unlike the reconstruction approach, field-level
inference uses the entire available data set, and a field-
level inference of the BAO scale that is robust to model
misspecification is a nontrivial demand.

The forward model employed here, LEFTfield [18], is
based on a Lagrangian formulation of the E!ective Field
Theory (EFT) of LSS [19–21]. This model incorporates
the dependence of the galaxy density on all local ob-
servables of a comoving observer, while enforcing Ein-
stein’s equivalence principle which ensures that matter
and galaxies co-move on large scales [22]. Indeed, this
fact allows for the inference of large-scale displacements,
and thus is the basis also for the standard BAO recon-
struction. Unlike the model employed in standard BAO
reconstruction, our forward model includes all contribu-
tions up to third order in perturbation theory, and is
able to predict the galaxy density field accurately up to
wavenumbers of k → 0.2hMpc→1 [23–26].

We should highlight previous studies which performed
field-level inference of distances from large-scale struc-
ture. Ref. [27] presented an inference of cosmology via
Alcock-Paczyński distortions on mock data generated
from the forward model, demonstrating substantial im-
provement over the power spectrum without reconstruc-
tion. Recently, Ref. [28] demonstrated field-level BAO-
scale inference using LEFTfield on mock catalogs gener-
ated by the EFT model at a higher scale than used in
the inference, showing robustness to model mismatch.

Here, we demonstrate for the first time that the model
can successfully perform field-level inference of the BAO
scale on fully nonlinear tracers: dark matter halos in N-
body simulations. Given that our forward model is ag-
nostic to the details of the tracer considered—and based
only on the equivalence principle—we expect that our re-
sults generalize to actual galaxies as well (see [29, 30] for
field-level results on simulated galaxies).

Data.—We consider two halo samples. The SNG sam-
ple consists of main halos in the log10 M200m = 12.5 ↑
14.0h→1M↑ mass range, identified with the ROCKSTAR

halo finder [31] at redshift z = 0.50 in an N-body,
gravity-only simulation. This sample has a mean co-
moving number density of n̄ = 1.3 · 10→3(h→1Mpc)→3.
The simulation assumes a flat ”CDM cosmology, encom-
passes a comoving volume L3 = (2000h→1Mpc)3 and
contains Nparticle = 15363 particles of mass Mparticle =
1.8 ↓ 1011 h→1M↑ [24]. The second, Uchuu halo sam-
ple, consists of main halos in the log10 M200m = 12.0 ↑
13.5h→1M↑ mass range, identified with ROCKSTAR at
redshift z = 1.03 (n̄ = 3.6 · 10→3(h→1Mpc)→3) in the
Uchuu simulation [32], which assumes a di!erent flat
”CDM cosmology. This simulation spans the same vol-
ume L3 = (2000h→1Mpc)3 while o!ering a much higher
mass resolution, Nparticle = 128003 particles of mass
Mparticle = 3.27 ↓ 108 h→1M↑. Moreover, the initial con-
ditions for the Uchuu simulations were not available to
the authors, providing a degree of “blinding” of the data.
Throughout, the model is evaluated at the fixed redshift
of the respective sample, and we drop time and redshift

arguments for clarity in the following.

Field-level EFT of biased tracers.—The EFTofLSS
provides a perturbative framework within which the
galaxy density field ωg can be systematically expanded,
order by order in perturbations, as

ωg[ω
(1)](k) =

∑

O

bOO[ω(1)](k) + ε(k). (1)

At each given order, there is a finite number of galaxy
bias operators O[ω(1)], each associated with a coe#-
cient bO. This includes bωω[ω(1)](k), where ω[ω(1)] is the
forward-evolved matter density, which is the well-known
linear relation that is employed in the standard BAO
reconstruction. Notably, Eq. (1) includes several addi-
tional nonlinear bias terms, namely the complete set of
6 bias operators at second and third order; see Sec. A 1
(SM) for the detailed description. The bias operators are
jointly computed with the nonlinear evolution, for which
we adopt second-order Lagrangian perturbation theory
(2LPT).

The second term on the r.h.s. of Eq. (1) is the
stochastic contribution encapsulating the random na-
ture of small-scale fluctuations and the discrete nature of
galaxies. These are described by the noise field ε, which
to leading order is Gaussian with RMS

ϑε(k) = ϑε,0

[
1 + ϑε,k2k2

]
, (2)

where the subleading contribution ↔ k2 captures the fi-
nite extent of galaxy-forming regions.

Field-level forward model.—We forward model the bias
fields O in Eq. (1) starting from Gaussian initial con-
ditions parametrized via a unit Gaussian random field
ŝ → N (0, 1), discretized on a grid of size Ngrid. The
linear density field is related to ŝ by

ω(1)(k, z|rs) = f(k, rs)

[
N3

grid

L3
P fid

L
(k, z)

]1/2

ŝ(k), (3)

where L is the simulation box side length, Ngrid is the
size of the initial conditions grid, and P fid

L
(k, z) is the

linear power spectrum in the fiducial (simulation) cos-
mology. We implement a change in the BAO scale rs via
the function f(k, rs) defined by

f(k, rs) =
T 2

BAO
(k|rs)

T 2

BAO
(k|rs,fid)

,

T 2

BAO
(k|rs) = 1 + A sin(k rs + ϖ) exp(↑k/kD) , (4)

where rs,fid is the comoving sound horizon in the fidu-
cial cosmology (see Sec. A 2 (SM) for how we determine
the value of rs,fid and of the transfer function parame-
ters A, ϖ and kD). Thus, unlike what is done in BAO
scale inferences on actual data, where the angular di-
ameter distance to a given redshift is varied, we instead
vary the BAO scale in the linear density field. We adopt
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1FIG. 1. Inferred BAO scale using field-level inference (FLI,
blue circles) and post-reconstruction power spectrum (orange
boxes) as a function of kmax. The upper panel shows results
for the SNG sample, while the lower shows the Uchuu sample.
We also indicate the ratio in BAO scale uncertainties from
both methods; FLI increases the BAO scale precision by 10–
40%, with the exception of the intermediate cuto! in the SNG
case. The blue stars show FLI results using the same scales
of the data, but with increased ” (see text for discussion).

In Fig. 1 we also indicate the ratio of the 68% CL error
on rs between the post-reconstruction power spectrum
analysis and the FLI result. Despite taking fully into ac-
count the reconstruction uncertainties and marginalizing
over all EFT bias terms, FLI generally improves over the
BAO scale uncertainty in the reconstruction analysis, for
both halo samples, by 10–40%. The only exception is
the intermediate cuto! for the SNG sample, where FLI
is also most significantly biased. This data point should
be revisited with the ” > kmax inference in the future.
Notice that the absolute error bars depend sensitively
on kmax, and current analyses typically use larger kmax

values than presented here. However, we expect our con-
clusions to continue to hold, or become even stronger,
at higher kmax (see [34]), provided we remain within the
range of validity of the EFT approach.

Where does the additional information come from?—
The information gain demonstrated in Fig. 1 can have
several causes. We investigate this analytically by consid-
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FIG. 2. Ratio of the pre- and post-reconstruction halo power
spectrum of the SNG sample to the smooth, “no-wiggle” part
of the linear power spectrum multiplied by the best-fit b21.
The BAO feature is enhanced post-reconstruction, but there
is a significant broad-band enhancement over the linear power
spectrum. On the other hand, FLI reconstructs the linear
density field and thus “measures” the BAO scale without a
broad-band enhancement. This is illustrated by the power
spectrum of the maximum-a-posteriori initial conditions sam-
ple from one of the SNG FLI chains (green dotted).

ering the limit of infinitely informative (zero-noise) data
following [42, 43]. Considering the Fisher information
on the BAO scale [Eqs. (E4)–(E6) (SM)], we can distin-
guish two sources of information gain: 1. Reconstruction

quality, quantified by ωPp-rec/ωrs: the larger this deriva-
tive, the more sensitive the analysis is to a change in the
BAO scale. Since the FLI forward model employed here
is based on 2LPT rather than 1LPT, one would expect a
better reconstruction quality, leading to a better restora-
tion of the BAO feature. However, tests employing FLI
with a 1LPT forward model for matter, and the same
bias expansion, yield similar constraints on rs, which in-
dicates that this is not the dominant e!ect on the scales
considered here. 2. Reduced variance: the variance of
each mode in the FLI is controlled by PL(k|rs). This
is illustrated by the maximum-a-posteriori (MAP) sam-
ple of the initial conditions in the FLI analysis shown in
Fig. 2, which di!ers from the denominator PL,no→wiggle

only via the BAO oscillations. On the other hand, the
variance in the reconstruction analysis is determined by
Pp-rec(k|rs). Since the reconstruction approach only re-
verts large-scale displacements, Pp-rec is not close to PL,
but has a substantially increased broad-band contribu-
tion. This is clear from Fig. 2 (shown there for the SNG
sample; the corresponding figure for the Uchuu sample is
shown in Fig. 8 (SM)). In fact, this increased variance,
estimated from Fig. 2, can by itself explain at least a
significant part of the observed information gain.

One might wonder then if it is possible to improve the
standard BAO reconstruction to also remove the broad-
band contribution, i.e. to make Pp-rec as close as possible

20-40% improvement in BAO 
scale precision over standard 

analysis!
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Conclusions
• After all these years we 

are, currently, still stuck 
with ΛCDM… but:

• We are continuing to find 
new signals to search for

• Inference/analysis 
methods have made 
tremendous progress — 
expect to extract much 
more from the data in 
coming few years


