IMPERIAL

CosmoFONDUE, Geneva, 11 June 2025

Timeline

- This talk: "Very Early Universe"
 - = before Big Bang nucleosynthesis ($\sim 1 \text{ min after Big Bang}$)

Ultimate Particle Physics Experiment

- ► Temperature $T \approx 1 \text{ MeV} \left(\frac{t}{s}\right)^{-\frac{1}{2}}$ ⇒ very early Universe = very high temperature
- ▶ Above LHC energies when $t \leq 10^{-14}$ s
- Test particle physics theories:
 - beyond the Standard Model
 - or even the Standard Model itself

(Buttazzo et al 2013)

Non-Equilibrium Phenomena

- Phase transitions
- Parametric resonance
- etc

- Relic particles
- Baryon asymmetry
- Primordial black holes
- Curvature or isocurvature perturbations
- Primordial magnetic fields
- Vacuum decay

Phase Transitions

- First-order phase transition:
 - Discontinuous observables
 - Bubbles
 (See posters by Schicho, Bernardo)
- Second-order phase transition:
 - Continuous observables
 - Diverging correlation length
- Crossover
 - Smooth observables
 - No actual transition

QCD Phase Transition

- ▶ Temperature $T \sim 100$ MeV, time $t \sim 10^{-5}$ s
- Quark gluon plasma → protons and neutrons
- Lattice field theory simulations: crossover
 - ⇒ No actual departure from equilibrium

Figure 1: The phase diagram of QCD.

(Reinhardt et al 2015)

Electroweak Phase Transition

- ▶ Temperature $T \sim 100$ GeV, time $t \sim 10^{-11}$ s
- ► Electroweak force
 → electromagnetic + weak nuclear force
- Naively, the Higgs field acquires a non-zero vacuum expectation value
- Standard Model: crossover (Kajantie et al. 1996)
- ▶ Beyond the Standard Model: can be first order⇒ Non-equilibrium process

Electroweak Baryogenesis

- In principle, the Standard Model can satisfy the Sakharov conditions needed to explain the baryon asymmetry (Kuzmin et al. 1985):
 - Baryon number violation: Chiral anomaly $B \leftrightarrow L \checkmark$
 - C and CP violation:
 CKM matrix (but not enough) X
 - Deviation from equilibrium:
 If phase transition is 1st order (but it isn't) X
- Some BSM physics needed!

Leptogenesis

- Fukugita&Yanagida 1986:Alternative to EW baryogenesis
- Neutrinos violate CP and lepton number
- ▶ Heavy neutrinos produced thermally in the early Universe, decay out of equilibrium ⇒ Lepton asymmetry
- Chiral anomaly converts to baryon asymmetry
- ▶ Typically temperature $T \sim 10^9 10^{13}$ GeV, time $t \sim 10^{-33} 10^{-25}$ s
- Some variants work at lower temperatures,
 e.g., Resonant leptogenesis (Pilaftsis&Underwood 2003)

Gravitational Waves

- ▶ First order phase transition:
 Bubbles collide, produce sound waves
 ⇒ Gravitational waves
- ▶ Peak frequency $f \sim 10^{-5} \text{ Hz} \left(\frac{T}{100 \text{ GeV}} \right)$
- EW phase transition: Detectable with LISA?
- Beyond the Standard Model,
 Grand Unified Theory phase transitions:
 Higher frequency
- See Dani Figueroa's talk

(Croon&Weir, 2025)

Topological Defects

- Symmetry breaking phase transitions
 - Direction of symmetry breaking uncorrelated at long distances
 - ⇒ Topological defects (Kibble 1976)
- Depending on symmetry breaking pattern:
 - Two-dimensional domain walls
 - One-dimensional cosmic strings
 - Pointlike monopoles

11

- Features on CMB, gravitational waves, etc.
- GUT phase transition would always produce magnetic monopoles
 Not observed = "monopole problem"

Inflation

- Period of accelerating expansion in the early Universe:
 - Solve horizon, flatness and monopole problems (Guth 1981)
 - Avoids initial singularity (or at least makes it unobservable)
 - Quantum fluctuations of the inflaton field produce curvature perturbations
- Other light scalars ⇒ perturbations, dark matter (e.g. Markkanen et al 2018)
- Theoretical challenges: See Blachier's talk, Rogelj's poster!
- ▶ Tensor/scalar ratio $r \leq 0.036$ (Planck/BICEP 2022)
 - Inflationary Hubble rate $H \lesssim 5 \times 10^{13} \text{ GeV}$
 - Reheat temperature after inflation $T \lesssim 5 \times 10^{15} \text{ GeV}$
- Single-field models with monomial potential ruled out, but many others are ok, e.g., Higgs inflation (Bezrukov&Shaposhnikov 2008) predicts $H \approx 7 \times 10^{12}$ GeV

End of Inflation

- Transition from acceleration to radiation domination
 - Energy transferred from inflaton to other fields
- Often a rapid non-equilibrium process:
 - Parametric resonance (Kofman et al. 1994)
 - Tachyonic instability (Felder et al. 2001)
 - Very model-dependent
- Possible signatures:
 - Curvature perturbations (Chambers&AR, 2007)
 - Gravitational waves (Kamionkowski et al 1994)
 with large-scale anisotropy (Bethke et al 2013, 2014)
 - Primordial black holes (Green&Malik 2000)
 (See poster by Joana)
 - etc

Timeline

Vacuum Metastability

- ▶ Higgs self-coupling becomes negative at $\sim 10^{10}$ GeV
 - The current vacuum state is metastable
 - First order phase transition to a negative-energy true vacuum
 ⇒ Gravitational collapse
- ▶ Today: Very long lifetime $\propto e^{1800}$
- However, even a single bubble in our whole past light cone would mean we could not exist

Vacuum Metastability in the Early Universe

- ▶ High temperature ⇒ Higher transition rate
 - Ok even up to $T = 10^{16}$ GeV (Delle Rose et al, 2016)
- Small black holes would catalyse (Hiscock 1987; Berezin et al 1991)
 - With evaporation, would rule out primordial BH for up to $M \sim 10^{12} \text{ GeV}$ (Burda et al. 2016)
 - However, see Zell's talk!
- Spacetime curvature during inflation:
 - Vacuum decay if $H \gtrsim 10^{10} \text{ GeV}$ (Espinosa 2008)

(Markkanen et al, 2018)

Non-Minimal Gravitational Coupling

$$\mathcal{L} = \dots + \xi R \phi^{\dagger} \phi$$

- Describes how the Higgs field couples to spacetime curvature (Chernikov&Tagirov 1968)
- Last unknown parameter in the Standard Model: LHC $|\xi| \lesssim 2.6 \times 10^{15}$ (Atkins&Calmet 2012)
- If $H \gtrsim 10^{10}$ GeV,
 - $\xi \gtrsim 0.1$ would stabilise the vacuum during inflation (Herranen et al. 2014), and
 - $\xi \lesssim 9$ would be needed to avoid instability at the end of inflation (Herranen et al. 2015; Figueroa et al. 2018)

(Markkanen et al, 2018)

Outlook

Observations

- Gravitational waves: Figueroa's talk
- Combine data from cosmology and particle physics

Theoretical challenges

- Quantum field theory in curved space time, finite temperature, out of equilibrium
- Limited data ⇒ need reliable calculations

Prospects

- Answer deep questions about the Universe, e.g., the origin of matter
- Testing particle physics theories in new ways
- Example: Non-minimal gravitational coupling