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Dark Matter properties relevant for cosmology

velocity 
dispersion  

(cold, warm, hot)

annihilation 
cross-section 
(into photons, 
dark photons)
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(into visible/dark 
sector, branching 
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scattering rates 
(with each visible / 

dark relic)

self-
scattering 

rate 
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momentum-

dependence) 
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dark matter 
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summed mass

6

Testable properties of neutrinos

summed mass

additional sterile 
neutrinos (eV-

range, keV range)

additional 
dark radiation 

(decoupled, self-
interacting, 
scattering)

non-
standard 

interactions 
(self, with DM, 
scalar fields, 
DE…), decay

temperature, 
chemical 
potential 

(asymmetry), 
distorsions

standard 
active 

neutrinos

Minimal model:  3 mass eigenstates with NO or IO, decoupled, stable, free-streaming;  
                           K,  eV, asymmetry ~ 

∙
∙ T ∼ 2.9 Σmν ≥ 0.06 10−9
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Testing particle properties with cosmology

• Post-Planck: CDM + more ingredients, to get bounds on particle properties 

                          e.g. on keV sterile neutrinos from Lya, DM interactions from CMB/LSS… 
• Post-SH0ES, DES, KiDS: particle properties as potential solutions to emerging tensions     

~~~~~~~~         e.g.  ,  tensions with DM/DR scattering, self-interacting neutrinos…  
• Recent SH0ES + CCHP, DESI: big confusion in particle cosmology!                                      

~~~~~~~~~~~~~What is the correct baseline model? 

Main tensions for CDM versus data: 
1. on  from DESI BAO versus others (SNIa, 

CMB) 
2. on  from SH0ES or CCHP versus others 

3. on : lensing amplitude from high-  lensed 
CMB temperature (CAMSpec vs. HilliPop) 

4. on : amplitude of fluctuations from galaxy 
weak lensing (decreases with recent KiDS) 

• Bounds very different as function of which data set you cherry-pick… 

• Example with neutrino mass
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Λ
Ωm
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AL ℓ

S8

Comments on The Role of  SN Ia in 
Measuring H0

Adam Riess,
 JHU/STScI

Distance Ladder:
GeometryàStarsàSN Ia

SH0ES: DR5 Riess+2022

Cosmological constraints from 
clusters, galaxies, and weak gravitational lensing

Chun-Hao To (KIPAC/Stanford/SLAC)

14

Figure 11. The Hubble diagram for the Pantheon sample. The top panel shows the distance modulus for each SN; the
bottom panel shows residuals to the best fit cosmology. Distance modulus values are shown using G10 scatter model.

Given a vector of binned distance residuals of the SN
sample that may be expressed as �~µ = ~µ � ~µmodel (as
shown in Fig. 11 (bottom)) where ~µmodel is a vector of
distances from a cosmological model, then the �2 of the
model fit is expressed as

�2 = �~µT ·C�1 ·�~µ. (8)

Here we review each step of the analysis of the Pan-
theon sample and their associated systematic uncertain-
ties.

5.1. Calibration

The ‘Supercal’ calibration of all the samples in this
analysis is presented in S15. S15 takes advantage of
the sub-1% relative calibration of PS1 (Schlafly et al.
2012) across 3⇡ steradians of sky to compare photome-
try of tertiary standards from each survey. S15 measures
percent-level discrepancies between the defined calibra-
tion of each survey by determining the measured bright-
ness di↵erences of stars observed by a single survey and
PS1 and comparing this with predicted brightness dif-

see E. Di Valentino’s talk
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Do we live in a neutrinoless universe?

• DESI BAO Y2 (+ CMB) Elbers et al. 2025 

• Theoretical possibility that neutrinos explain  but decay into lighter / massless relics 
Escudero et al. 2007.04994, Barenboim et al. 2011.01502, Franco Abellan et al. 2112.13862,    
Craig et al. 2405.00836…

Neff ≃ 3

14
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FIG. 7. Constraints on
P

m⌫ from our baseline data combination (DESI DR2 BAO with CMB) and with the addition of
di↵erent supernova datasets for ⇤CDM (left) and w0waCDM (right). The impact of the choice of SN dataset is significantly
greater in w0waCDM, while the choice of CMB likelihood is more important in ⇤CDM.

way to fold in prior information from neutrino oscilla-
tion experiments, it also leads to highly non-linear priors
for the heavier neutrino masses. If the same mechanism
is responsible for generating all three neutrino masses,
then a prior that is linear for all masses may be better
motivated.

From the combination of DESI BAO, CMB, and a
global fit to neutrino oscillation experiments (NuFIT 6.0)
[49], we obtain the following constraint on the lightest
neutrino mass,

ml < 0.023 eV (95%; NO or NO/IO), (21)

when assuming the normal mass ordering or in the gen-
eral case (NO/IO). When assuming the inverted mass
ordering, we find a very similar bound of

ml < 0.024 eV (95%; IO). (22)

This is a significant improvement with respect to a similar
analysis utilizing BOSS DR12 [166], Planck 2015 [167],
Pantheon SNe Ia [168], and BBN information [169], that
yielded ml < 0.086 eV (95%) [32]. The result may also
be compared with the constraint, ml < 0.040 eV [33]
from Planck 2018[34], BOSS DR12 [166], the DR7 Main
Galaxy Survey [170], and the Six-degree-Field Galaxy
Survey (6dFGS) [171].

In the general case, the data moderately prefer the nor-
mal mass ordering. Assuming ⇤CDM, we find a posterior
probability from DESI BAO + CMB + NuFIT of

P (NO) = 1 � P (IO) = 0.91. (23)

This corresponds to a Bayes factor of K = 10. The ev-
idence is slightly weaker for the alternative CMB likeli-
hoods (K = 6 for L-H and K = 8 for plik). Overall, this

analysis thus provides substantial evidence in support of
the normal mass ordering, under the assumption of the
⇤CDM +

P
m⌫ cosmology. See Fig. 6 for the marginal-

ized posterior distributions on the sum of neutrino masses
for the di↵erent mass ordering scenarios.

In a previous DESI analysis based on DR1 BAO data
[38], the upper limits for the normal and inverted mass or-
derings were determined by assuming a degenerate mass
spectrum (as in the baseline case here) and imposing
the additional prior that

P
m⌫ � 0.059 eV (NO) orP

m⌫ � 0.10 eV (IO). The posteriors obtained under
this approximation agree well in the tail of the distri-
bution. Consequently, we confirm that the approximate
procedure produces accurate 95% upper limits. In the
case of the normal ordering, we find

X
m⌫ < 0.101 eV (95%; NO), (24)

X
m⌫ < 0.105 eV (95%;

X
m⌫ � 0.059 eV), (25)

while in the case of the inverted mass ordering

X
m⌫ < 0.133 eV (95%; IO), (26)

X
m⌫ < 0.135 eV (95%;

X
m⌫ � 0.10 eV), (27)

thus validating the results from [38].

D. Impact of CMB likelihoods

We investigate the dependence of neutrino mass con-
straints on the Planck CMB likelihood, specifically com-
paring the plik, CamSpec and L-H combinations within

NO     IO
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Probing neutrino mass through geometrical effects

Cosmological constraints from 
clusters, galaxies, and weak gravitational lensing

Chun-Hao To (KIPAC/Stanford/SLAC)
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Obviously ✓
?
s is not a density, but given the other two

and the ⇤CDM model, the dark energy density can be in-
ferred, as we now explain. The angular size of the sound
horizon is the angle subtended by the sound horizon, pro-
jected from the last-scattering surface. It is thus given
by ✓

?
s = r

?
s/D

?
A where r

?
s is the comoving size of the

sound horizon at last scattering and D
?
A is the comov-

ing angular-diameter distance to last scattering. These
depend on the expansion rate and sound speed in the
plasma via:

r
?
s =

Z 1

z?

cs(z)

H(z)
dz and D

?
A =

Z z?

0

c

H(z)
dz (2)

where z? is the redshift of recombination, which for the
standard recombination scenario is around z? ⇡ 1090.
The expansion rate prior to recombination, via the Fried-
mann equation, depends only on the baryon, cold dark
matter, and radiation densities, as the cosmological con-
stant contribution is negligibly small. Additionally, of
the ⇤CDM parameters, !b and !c are all that is needed
to determine z? and r

?
s . Given ✓

?
s , !b, and !c one can

thus determine D
?
A = r

?
s/✓

?
s . The only unknown den-

sity in the integrand for calculating D
?
A is !⇤, and thus

one can determine it. With !⇤ determined in this way,
H(z) is also known at all redshifts. See [e.g. 19] for more
details.

2. Component densities determined assuming ⇤CDM +
free ⌃m⌫

The previous section modeled neutrinos as massless
particles; however, from observations of solar and at-
mospheric neutrinos it is known that at least two neu-
trino species have non-zero mass. Current global anal-
yses of neutrino oscillation data have constrained the
squared mass di↵erences to be �m

2
21 ⇡ 7.5 ⇥ 10�5 eV2

and |�m
2
31| ⇡ 2.55 ⇥ 10�3 eV2 [20, 21]. Depending on

the sign of �m
2
31, these constraints set lower bounds

for the sum of the masses: in the normal ordering (i.e.
m3 > m1, hereafter NO) we have ⌃m⌫ > 0.06 eV, and
in the inverted ordering (IO), ⌃m⌫ > 0.1 eV. Because
near-term cosmological data will not measure individual
masses [22], the cosmological impact of neutrino mass is
usually parameterized by the sum of their masses, ⌃m⌫ .3

Freeing ⌃m⌫ changes the picture described previously
in two ways. First, the post-recombination total energy
density, and thus expansion rate, now depends both on
!⇤ and on the unknown neutrino density. Given just
✓

?
s , !b, and !c there is now a degeneracy between !⇤

and ⌃m⌫ , so H(z) is no longer completely determined.
Instead, we have a one-parameter family of H(z) curves

3
Throughout this paper we assume two species of massless neu-

trino and one massive, unless otherwise stated.
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FIG. 1. Similar to Fig. 1 of Pan and Knox [23] we show here
fractional changes to the expansion rate at fixed angular size
of the sound horizon, as projected from the last-scattering
surface. The baseline expansion rate is for a model with
⌃m⌫ = 0. The m̄⌫ parameter and the associated phenomeno-
logical model are described in Section III A — positive values
of m̄⌫ are identical to physical neutrinos with ⌃m⌫ = m̄⌫ at
the background level. The gray band indicates the full width
at half maximum of the CMB lensing kernel, showing the red-
shifts to which CMB lensing is most sensitive. The vertical
dashed line is at z = 2.33, the maximum redshift for which
we include BAO measurements.

which all give the same D
?
A and therefore ✓

?
s . Some mem-

bers of this family are shown in Fig. 1.
A second way neutrino masses can alter the picture

presented so far arises when neutrinos become non-
relativistic around or before recombination. Defining the
transition to non-relativistic to occur when the rest mass
is comparable to the average kinetic energy we get

1 + znr =
m⌫

3.15T⌫0
⇡ 113

m⌫

0.06 eV
. (3)

This transition occurs near recombination or earlier for
neutrinos more massive than m⌫ ⇠ 0.6 eV. Masses in this
range will lead to changes in early ISW e↵ects, providing
a new CMB signal (beyond what is captured by !b, !c,
and ✓

?
s inferences) allowing for the degeneracy between

!⇤ and ⌃m⌫ to be partially broken [24, 25]. We do not
elaborate further on this degeneracy breaking since the
addition of any of CMB lensing, BAO, or uncalibrated
supernova measurements constrains neutrino masses suf-
ficiently tightly that the alterations of early ISW e↵ects
are negligible.

B. CMB Lensing

As CMB photons travel from the last-scattering sur-
face, their paths are distorted by gravitational potential
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A second way neutrino masses can alter the picture

presented so far arises when neutrinos become non-
relativistic around or before recombination. Defining the
transition to non-relativistic to occur when the rest mass
is comparable to the average kinetic energy we get

1 + znr =
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This transition occurs near recombination or earlier for
neutrinos more massive than m⌫ ⇠ 0.6 eV. Masses in this
range will lead to changes in early ISW e↵ects, providing
a new CMB signal (beyond what is captured by !b, !c,
and ✓
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s inferences) allowing for the degeneracy between

!⇤ and ⌃m⌫ to be partially broken [24, 25]. We do not
elaborate further on this degeneracy breaking since the
addition of any of CMB lensing, BAO, or uncalibrated
supernova measurements constrains neutrino masses suf-
ficiently tightly that the alterations of early ISW e↵ects
are negligible.

B. CMB Lensing

As CMB photons travel from the last-scattering sur-
face, their paths are distorted by gravitational potential

Angular diameter distance affected by  for :mν z > znr

… or at all  when fixing  rather than  z θs H0, Ωm

Lynch & Knox 2025
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Probing neutrino mass through growth of perturbations
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Figure 2. Residual of the CMB lensing spectrum for cosmologies varying the neutrino mass sum (by color)
relative to a cosmology with massless neutrinos, measured in units of the neutrino fraction f⌫ [Eq. (2.4)].
Results neglect nonlinear structure growth for illustration. Results also take the normal mass hierarchy
because the equal-mass approximation underestimates the suppression for the minimum mass sum; for all
other curves, the di↵erences between the normal, inverted, and equal-mass hierarchies are negligible. The left
and right panels respectively fix the angular extent of the photon sound horizon ✓s and the Hubble constant
h. In the former case, the matter fraction increases as ⌦m / (1 + f⌫)5, delaying the dark energy epoch;
above the neutrino free-streaming scale [Eq. (2.30)] the lensing spectrum is thus enhanced by about one
factor of 1 + f⌫ , whereas on smaller scales the suppression is reduced to a similar degree compared to that if
⌦m were unchanged. In contrast, holding h fixed (as commonly taken) yields no large-scale enhancement
and a greater degree of suppression at high `.

to matter domination) or that yield oscillatory residuals (e.g., the amplitude of acoustic oscillations
as controlled by the baryon density). Inferring the degree of lensing-induced peak smearing therefore
depends partly on early-Universe physics.

The primary anisotropies independently constrain the six-parameter ⇤CDM model via early-time
e↵ects well enough to tightly (but indirectly) constrain late-time cosmology and structure growth.
The degree to which the observed acoustic peaks appear smeared relative to the (unlensed) ⇤CDM
prediction provides a consistency test, one that Planck data is known to not pass [1]. Introducing
additional parameter freedom via a rescaling of the lensing potential AL [93], Planck prefers excess
peak smearing at the 2 to 3� level [1]. While the degree of this so-called lensing anomaly varies
among recent Planck maps and likelihoods [94, 95] (e.g., the treatment of foregrounds), even direct
reconstructions of the CMB lensing spectrum from four-point statistics prefer an amplitude of
lensing larger than the ⇤CDM prediction. This general lensing excess leaves little room for massive
neutrinos to further suppress the amplitude of structure. Marginalizing over a parameter Asmear,
which rescales the amplitude of the lensing spectrum insofar as it lenses the temperature and
polarization anisotropies,14 e↵ectively removes the information on late-time structure from the
primary CMB.

Finally, massive neutrinos modify the time evolution of metric potentials as they become
nonrelativistic, both by altering the expansion rate (compared to that for a pure-matter Universe,
in which the potentials are constant) and the clustering of matter (compared to a Universe where
all matter clusters) [50, 96, 97]. The incompatibility of measurements of the first acoustic peak
(and lower multipoles) with these e↵ects requires that neutrinos become nonrelativistic well after

14 Typically, the parameter referred to as AL rescales the lensing spectrum consistently in its impact on temperature
and polarization anisotropies as well as the predicted lensing spectrum itself (which is measured via the four-point
function of CMB maps). Here by Asmear we denote only the former e↵ect, which we use to derive constraints on
structure from CMB lensing independent of the peak-smearing e↵ect. Marginalizing over Asmear also yields CMB
constraints on late-time cosmology that e↵ectively only derive from geometry (i.e., ✓s), as employed in Sec. III A 2.

LoVerde & Weiner 2024

Neutrino free-streaming suppresses power spectrum and lensing spectrum for :k > knr ∼ keq

CMB lensing 
spectrum 

residual w.r.t. 
Mν = 0
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Geometrical effect from CMB versus BAO

2

trino oscillations,
Õ
<a > 0.059 eV, significantly degrades

the DESI constraint to
Õ
<a < 0.113 eV (95%) [18]. This

dependence on a priori assumptions also calls into question
the

Õ
<a � 0 prior. Only by relaxing this constraint, can we

assess whether cosmological data are compatible with physical
neutrino masses, determine the sensitivity of the data indepen-
dently of the prior, and reveal the dependence of the central
value on the data and choice of cosmological model.

Previously, [45] extended the posterior distribution to neg-
ative values by fitting a Gaussian distribution to %(Õ<a).
In this way, the combination of Planck and SDSS BAO gaveÕ
<a = �0.026 ± 0.074 eV (68%). More recently, [44] ex-

tended the analysis to negative neutrino masses by expressing
the effect of neutrinos on the CMB in terms of �lens (

Õ
<a),

finding
Õ
<a = �0.16±0.09 eV (68%) from Planck, ACT, and

DESI BAO. However, neither approach can fully characterize
the effects of

Õ
<a < 0, such as the impact on the expansion

history, as probed by DESI, or capture parameter correlations
independently of �lens. In this work, we introduce a model that
extends the domain to negative masses in a complete and self-
consistent manner and examine the preference for

Õ
<a < 0.

II. NEGATIVE NEUTRINO MASSES

Formally, the Friedmann equations that govern the expan-
sion of space depend only on the neutrino masses squared, <2

8 ,
via expressions like

⌦a (0) =
#a’
8=1

8⌧)4
a

3c�2
0

π 1

0

G2
q
G2 + 02<2

8 /)2
a

1 + 4G
dG, (1)

where #a is the number of neutrino species, )a the present-
day neutrino temperature, and �0 the Hubble constant. Only
at late times, when the neutrinos become non-relativistic and
the 02<2

8 /)2
a term dominates, does this expression reduce to

the well-known approximation

⌦a ⇡
Õ
<a

93.14⌘2 . (2)

The strict dependence on <2
8 remains true at the perturba-

tion level. Hence, an alternative approach is needed to ex-
tend cosmological calculations to negative masses. The ef-
fect of Eq. (1) is to produce a greater radiation density while
neutrinos are relativistic and a greater matter density once
neutrinos become non-relativistic. Without attributing the
effect to neutrinos, a phenomenological term of the form,
⌦a,eff (0) = ^⌦a (0), would behave in the opposite way for
^ < 0, reducing the radiation density at early times and the
matter density at late times. To make contact with terrestrial
constraints, we could reinterpret such a term as an effective cos-

mological neutrino mass parameter,
Õ
<a,eff ⌘ 93.14⌘2 ⌦a,eff.

Rather than explicitly implementing a term like ⌦a,eff (0),
we accomplish the same with the following operational defini-
tion. For simplicity, we restrict to the case where all masses are
either positive or negative. For any cosmological observable
- , such as the CMB temperature power spectrum, - = ⇠TT

✓ ,

SH0ES

DESI + BBN

�1.5 �1 �0.5 0 0.5

65

70

75

80

Õ
<a,eff [ eV ]

�
0
⇥ km

s�
1

M
pc

�1
⇤

0.8

0.9

1

f8
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FIG. 1. Constraints on the effective neutrino mass,
Õ
<a,eff, the

Hubble constant, �0, and the amplitude of matter fluctuations, f8,
from Planck temperature and polarization data [32, 39, 46], assuming
⇤CDM. The degeneracy between these parameters can be broken with
measurements of the expansion history. Shown are the ±1f bounds
from DESI BAO, combined with a Big Bang nucleosynthesis (BBN)
prior on ⌦b⌘

2 [16, 17], and the SH0ES measurement of �0 from
the local distance ladder [47]. The unphysical regime,

Õ
<a,eff < 0,

is grey and the dotted lines indicate the lower bounds from neutrino
oscillations for the normal ordering (NO) and inverted ordering (IO).

and a set of fixed parameters, ) = {lb,lc, \s, g, �B , =B}, we
define the prediction for the effective neutrino mass,

Õ
<a,eff,

as a first-order Taylor expansion around the massless case,

-
Õ
<a,eff

) ⌘-
Õ
<a=0

) + sgn(Õ<a,eff)
h
-

|Õ<a,eff |
) �-

Õ
<a=0

)

i
, (3)

where sgn is the sign function and -
|Õ<a,eff |
) is the prediction

for a cosmological model with positive neutrino masses |<8 |.
A key advantage of this approach is that one recovers exactly
the physical neutrino model for

Õ
<a,eff =

Õ
<a � 0. More-

over, by extrapolating in data space rather than in parameter
space, one need not assume a functional form for the marginal-
ized posterior distribution, nor make any assumptions about
parameter correlations. We implemented this model in the
Boltzmann code CLASS [48, 49] and the cosmological sam-
pling code cobaya [50]. We apply the model to the latest
BAO measurements from DESI [16, 17] and CMB temper-
ature and polarization measurements from Planck, using the
low-✓ Commander likelihood [32] and the high-✓ CamSpec like-
lihood [39, 46] based on the final data release (PR4). In some
cases, we also include CMB lensing measurements based on
ACT DR6 [51–53] and Planck PR4 lensing maps [54]. Our
primary analysis is explicitly blind to the constraints from neu-
trino oscillations. In this case, we assume a degenerate mass
spectrum with #a = 3 species and <a,eff ⌘ <1 = <2 = <3.
We use a uniform prior, <a,eff 2 [�1.5, 1.5] eV. When we
perform a combined analysis of cosmological data and labora-
tory constraints, we adopt Gaussian likelihoods on �<2

21 and
|�<2

31 |, based on global fits to the experimental data [11], and
fix <1,<2,<3 in terms of �<2

21, |�<2
31 |, V, and <lightest, with

a uniform prior on <lightest 2 [0, 0.5] eV [55].
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FIG. 5. Left panel : Constraints from CMB and BAO data, considered separately, using the three background-only likelihoods.
For the CMB constraint, we use the full three parameter background-only likelihood, whereas for the BAO-cb constraints we
use BAO likelihoods along with a joint Gaussian prior on !b and !c with covariance given obtained from the background-only
likelihood. The top axis shows the e↵ective neutrino energy density using m̄⌫/93.14 eV = !m̄⌫ . Right panel : The constraints
using the background-only CMB likelihood jointly with BAO data.

a joint posterior of !b and !c obtained by marginalizing
either PR3-B, NoLens-B, or PR4-B over ✓s. With this
extension, we can plot BAO constraints (with this CMB
prior) directly in the ⌦m � m̄⌫ plane after marginaliz-
ing over uncertainties in !b and !c. This is similar to
the ⌦m � !mr

2
d plane used by Loverde and Weiner [16],

but allows us to marginalize over the CMB information
instead of assuming fiducial values. Note that we use
Equation 5, with ⌃m⌫ replaced by m̄⌫ , and rs,f replaced
with rs to plot in this plane. Since !mr

2
s can be deter-

mined from BAO data, and the remaining quantities can
be determined from !b and !c, the BAO-bc likelihoods
are indeed capable of constraining m̄⌫ , as desired.

C. Results

We constrain the four-parameter e↵ective neutrino
mass background model in an MCMC analysis with the
COBAYA [48] sampler, using the reduced CMB and BAO
likelihoods and BAO data just described. We consider
chains as converged when the Gelman-Rubin statistic is
at R � 1 < 0.01. Parameter constraints are reported as
68% confidence intervals.

We begin with a comparison between a result derived
with physical neutrino masses and a result in our ef-
fective neutrino mass model, in the regime where they
can be compared, namely for m̄⌫ > 0. We run a chain

TABLE II. Priors used for the background-only and DDM
analyses presented in this work. In the DDM analysis, � is
treated as a derived parameter following the relationship dis-
cussed in Section IV. In both analyses, we assume two mass-
less and one massive species of neutrino.

Model Parameter Prior
Background only h U [0.4, 1]

!b U [0.005, 1]
!c U [0.001, 0.99]
m̄⌫ U [�1, 1]

DDM 100✓
?
s U [0.5, 5]

!b U [0.005, 1]
!c U [0.001, 0.99]
ln

�
1010

As

�
U [1.61, 3.91]

ns U [0.8, 1.2]
⌧reio U [0.01, 0.8]
⌃m⌫ U [0.0, 3.0]
!

ini
ddm U [0.0, 0.01]

A2pt U [0, 10]

with the PR3-B and BAO likelihoods, with a prior that
m̄⌫ > 0. The resulting constraint on m̄⌫ is shown as
the blue dashed line in Fig. 6; it is very similar to the
corresponding constraint from the full likelihoods with
physical neutrino masses, shown as the solid blue line.
This agreement supports our expectation that the com-
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FIG. 3. Constraints in the !⌫ � !cb plane reveal the comple-
mentary nature of CMB lensing and BAO measurements for
determining !⌫ or, equivalently, ⌃m⌫ . BAO data, combined
with primary CMB data, are sensitive to the sum !⌫ + !cb

while lensing data are sensitive to a combination that is close
to the di↵erence !cb � !⌫ . Since primary CMB data are sen-
sitive to !cb the degeneracies are only approximate and the
contours close. To avoid lensing information a↵ecting the
BAO result here we marginalized over A2pt.

In contrast, CMB lensing power responds to a change in
!cb in a direction opposite to the direction it responds to
a change in !⌫ . As we will see CMB lensing is chiefly
sensitive to a di↵erence which is approximately !cb �
0.5!⌫ .

This is shown in detail in Fig. 3. As discussed above,
to get constraints in this plane from BAO data we need
to add in primary CMB data. For our purposes here, we
want to do so without including any lensing information,
so we marginalize over A2pt. We indeed see approximate
degeneracies in the two sets of constraints, with the BAO
one approximately along a line of constant !cb + !⌫ and
the lensing one approximately along a line of constant
!cb � 0.5!⌫ .

This figure explains why BAO data are more e↵ec-
tive than CMB lensing data at constraining the neutrino
mass, when combined with measurements of the CMB
power spectra. The primary CMB (ignoring lensing ef-
fects) is hardly sensitive to neutrino masses in the range
displayed, so it essentially constrains !cb alone. The con-
straint in the !cb�!⌫ plane would be close to a horizontal
band. With lensing e↵ects included, the primary CMB
gains sensitivity to this mass range, but the sensitivity
is weak and approximately falls along a line of constant
!cb�0.2!⌫ . BAO data, with their constraint falling along
!m + !cb, leads to tighter constraints because this direc-
tion is less aligned with constant !cb � 0.2!⌫ than is the

constraint from adding in lensing reconstruction data,
approximately !cb�0.5!⌫ . Of course, adding both BAO
and CMB lensing reconstruction data leads to greater
improvements, since these contours are even less aligned
with each other, as shown with the yellow contour in
Fig. 3.

It is also evident from this figure that CMB lensing
data prefer higher values of !cb than do BAO data, in
combination with primary CMB data. One implication
of this is that, in the ⇤CDM + ⌃m⌫ model space, the
lensing excess and matter deficit signatures are closely
related. The low matter density preferred by BAO data
when combined with primary CMB data reduces some-
what the expected lensing power, which contributes to
the excess lensing problem. Similarly, the lensing recon-
struction (and peak-smearing in the CMB power spectra)
both prefer higher !c, and therefore !cb, which worsens
the matter deficit.

We find it interesting that we can use Planck primary
CMB data to set expectations for each of these probes,
for a continuum of values of ⌃m⌫ , and in both cases
what is observed is the opposite of expectations assuming
⌃m⌫ > 0.

III. BACKGROUND PREFERENCE FOR
!m < !cb

In this section we quantify the preference, noticed by
Loverde and Weiner [16], of BAO plus CMB data for
a total non-relativistic matter density today that is less
than the sum of baryonic and cold dark matter density
today. We do so by defining a toy model with an e↵ec-
tive neutrino mass parameter that can take on negative
values, to allow for the possibility that !m < !cb. Such a
di↵erence could then be interpreted as a “negative e↵ec-
tive neutrino density” !m̄⌫ ⌘ !m � !cb. This is similar
in spirit to previous e↵ective “negative neutrino mass”
implementations [13–15], but one which only models the
impact of the neutrino on the background evolution. We
first discuss our implementation of the model, as well as
our method for comparing to data while only modeling
the background evolution. We then present the results of
this analysis, which show a preference from CMB+BAO
data for a matter-density deficit.

A. Model

Here we construct a phenomenological model of the
background evolution with an e↵ective neutrino mass pa-
rameter that is allowed to be negative. We assume two
species of massless neutrino, which behave in the stan-
dard way, and one neutrino with this e↵ective mass. Ad-
ditionally, we set ~ = kB = c = 1. That being the case,
the energy density and pressure of the one massive neu-
trino species are computed from Fermi-Dirac integrals
over neutrino momentum:

From Lynch & Knox 2025

From LoVerde & Weiner 2024 Geometrical information 
from CMB+BAO

Growth information 

from CMB lensing

(assuming CDM!)Λ

 ωc + ωb 27
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Figure 8. Posterior distribution over the neutrino mass sum M⌫ and the matter fraction ⌦m, ACT + Planck

PR4 lensing data [49, 105] (grey), DESI DR1 BAO data [39–41] (red), DES 5YR SNe data [36] (gold), and
the lensing dataset combined with each of DESI (dark blue) and DES (light blue). Results that include
lensing data impose a prior on all ⇤CDM parameters except ✓s, deriving from the posterior using Planck

PR3 CMB data [1, 2] (also marginalized over Asmear), while results that exclude Planck data instead include
a prior on the baryon and CDM densities derived from Planck data (Sec. II A). The dashed black/white line
indicates the parameter direction ⌦m / (1 + f⌫)8 (chosen to match by eye the orientation of the posterior
using only CMB and lensing data). Results are otherwise presented as in Fig. 4.

⇤CDM parameters and Planck temperature and polarization data (by computing the mean and
covariance of a sample thereof) and marginalize over ✓s (i.e., by removing that dimension from
the approximate posterior). While this procedure is rather ad hoc, it simply serves as a means to
take Planck ’s information on the shape of the CMB anisotropy spectra as a prior for CMB lensing
likelihoods. To showcase the constraining power of CMB lensing maps in probing structure, we also
marginalize the Planck posteriors over Asmear.

We take this posterior approximation as a “geometry-free” Planck prior over !b, !c, ⌧reio, ns,
and As in combination with measurements of the CMB lensing power spectrum from ACT and
Planck PR4 in Fig. 8. Without Planck ’s geometric information to pin the dark energy density and
fix the distance to last scattering, the matter fraction is only constrained with ⇠ 5% precision (at
any particular value of M⌫ , increasing to ⇠ 9% when marginalized). The suppression of structure
by massive neutrinos can thus be partly compensated for by delaying the dark energy era, leading
to a degeneracy direction ⌦m / (1 + f⌫)8 or so. The posterior for lensing data alone falls o↵ at a
95th percentile of M⌫ ⇡ 0.4 eV, at which point neutrinos suppress the amplitude of structure to an
extent intolerable to the ACT+PR4 lensing dataset.

The steep correlation between the neutrino mass sum and the matter fraction again poises
low-redshift distances to contribute substantially to neutrino mass constraints. Figure 8 also displays
the same posteriors using DESI DR1 BAO and DES 5YR SNe from Fig. 4 and the combination of
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Constraints agnostic on sound horizon/early universe physics

• “Geometrical information” usually means:                                                          
~~~~~~~~~~~~~~~“distances + standard sound horizon  ” 

• Get “pure geometrical information” from:                                                               
~~ratio of geometrical probes (CMB  over BAO  , BAO  over  ) + SNIa magn. 

Ravi Sharma & JL (in prep.): constraints agnostic on sound horizon:                           

~~~~~~~~“pure geometrical” + growth from CMB lensing : 

• with  :  posterior peaks at positive values 

               but  tensions remains and pushes e.g. for DDE 

• with  :  posterior still peaks at positive values
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Putting geometrical and growth effects together

Multiple ways to reduce or solve some (or all) of these tensions (hardest is SH0ES): 

• Non-physical models (“diagnosis”) 
- Extrapolated effect of “negative neutrino mass” would save CDM and solve all tensions 

but  ; no simple equivalent physical mechanism (comb. of DDM and MG?) 

- Free  improves fit to CMB TT only, relaxes  bound 

• Physical models: 
- Late DE (e.g.  ) solves  tension (not ), relaxes  bound (<0.13 eV, 95%CL) 

- Early DE reduces  ,  tensions, relaxes  bound 

- Decaying DM reduces  tension (not , ), relaxes  bound  Lynch & Knox 25 

- High  reduces  ,  tensions (not ), relaxes  bound    Sailer et al. 25,             

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Jhaveri et al. 25 

All lead to significantly different  bounds! 

Need more independent measurements & other experimental techniques (CMB polarisation, 
Stage-IV LSS surveys, 21cm, standard sirens…)

Λ
H0

AL Σmν

w0, wa Ωm H0 Σmν

Ωm H0 Σmν
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Extended DM & EFTofLSS: theoretical challenges

๏ Models with suppression of structures imprinted during radiation-dominated (RD) era. 
Examples: 

๏ warm DM (WDM), hot DM (HDM), mixed C+WDM, mixed C+HDM (mass in 10 eV - 10 keV 
range) when neglecting thermal velocity effects during MD 

๏ DM scattering off dark radiation (DR). DR can be free-streaming or self-interacting. Either 
dark decoupling (ETHOS n>0) or constant during RD (ETHOS n=0) 

๏ DM scattering off neutrinos; some models of DM scattering off baryons 

๏  Models with suppression of structures imprinted during matter-dominated (MD) era. 
Examples:  

๏ WDM, HDM, C+WDM, C+HDM (mass in 1 eV - 100 eV range) if high precision required 
(thermal velocity effects during MD) 

๏ Decaying dark matter. Simplest: relativistic daughters. Next level: relativistic + lighter 
daughter (CDM—> DR+WDM) 

๏ DM with self-interactions (SIDM): short-range; long-range, with interacting DM-dark energy 
as possible limit  

๏ Some models of DM scattering off baryons

Γ/H =
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๏ Decaying dark matter. Simplest: relativistic daughters. Next level: relativistic + lighter 
daughter (CDM—> DR+WDM) 

๏ DM with self-interactions (SIDM): short-range; long-range, with interacting DM-dark energy 
as possible limit  

๏ Some models of DM scattering off baryons

Γ/H =

different ICs but same growth as CDM 

 separability in k, z 

 standard EFTofLSS with EdS kernels

Λ

⇒

⇒

scale-dependent growth 

 no separability in k, z 

 beyond EdS kernels

⇒

⇒
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SPT, EFTofLSS, … with scale-dependent growth

๏ Full integral over time- and scale-dependent kernels (Garny & Taule 20,22) 

• doublet:        

• e.o.m: 

• time-dependent kernels: 

๏ FOLPS: taking into account -dependence of  and  at each time (Aviles et al. 21, 22..) 

• At given eta, kernels get multiplied by  or  

๏ Potentially much quicker and still nearly exact method inspired from N-body: Newtonian 
Motion gauges (C. Fidler, JL, A. Moradinezhad, in prep.)

Ψa = (δcb , − θcb/ℋf )

k δcb θcb

D(k, η) f(k, η)

2.1 Standard perturbation theory

The equations of motion for the density contrast � and velocity divergence ✓ = @iv
i (neglecting

vorticity) in Fourier space reads

@⌧�(k, ⌧) + ✓(k, ⌧) = �
Z

k1,k2

�D(k � k12)↵(k1,k2)✓(k1, ⌧)�(k2, ⌧) ,

@⌧✓(k, ⌧) + H✓(k, ⌧) +
3

2
H2⌦m�(k, ⌧) = �

Z

k1,k2

�D(k � k12)�(k1,k2)✓(k1, ⌧)✓(k2, ⌧) , (2.1)

where ⌧ is conformal time, H = d ln a/ d⌧ the conformal Hubble rate and ⌦m the time-dependent
matter density parameter. We introduced the shorthand notations k12 = k1 +k2 and

R
k =

R
d3

k and
used �D to denote the Dirac delta function. The mode coupling functions are

↵(k1,k2) = 1 +
k1 · k2

k2
1

, �(k1,k2) =
(k1 + k2)2(k1 · k2)

2k2
1
k2
2

, (2.2)

as usual. In SPT one assumes that the anisotropic stress of the fluid vanishes. We also make this
assumption here initially, but will relax it when discussing an e↵ective field theory setup in Sec. 4.

The equations of motion can be written in a compact form after defining the tuple  = (�, �✓/Hf)
and using ⌘ = log D, with D and f being the linear growth factor and growth rate, respectively,
thus [20]:

@⌘ a(k, ⌘) + ⌦ab(⌘) b(k, ⌘) =

Z

k1,k2

�D(k � k12)�abc(k,k1,k2) b(k1, ⌘) c(k2, ⌘) . (2.3)

The matrix ⌦ab governing the linear evolution is given by

⌦ab(⌘) =

✓
0 �1

� 3

2

⌦m
f2

3

2

⌦m
f2 � 1

◆
, (2.4)

and the only non-zero components of the non-linear vertex are �121(k,k1,k2) = ↵(k1,k2) and
�222(k,k1,k2) = �(k1,k2).

In SPT one typically adopts the Einstein–de-Sitter (EdS) approximation, in which ⌦m/f2 = 1
so that the ⌦ab-matrix becomes time-independent. This approximation greatly simplifies Eq. (2.3),
allowing for analytic solutions order by order. Only the decaying mode is a↵ected by changes in the
ratio ⌦m/f2 and moreover the ratio only departs significantly from one at late times, z . 2 in ⇤CDM
(and also in moderate extensions). Consequently, the EdS-approximation has been shown to work
at the percent-level for the power spectrum [57, 66–68, 70] as well as the bispectrum [39, 69]. In
particular, in EFT analyses the departure from EdS can be largely degenerate with counterterms,
only leading to a shift in the EFT parameters [39, 68]. In this work we consider schemes with and
without the EdS approximation, which we will specify accordingly.

2.2 Extension of SPT

Following [57], we extend SPT by allowing for multiple species in the fluid as well as allowing for
a general time- and wavenumber-dependence. More precisely, for an N -fluid we collect the density
contrast and velocity divergence for each component i into into the field vector  a = (. . . , �i, ✓i, . . . )
with the index a running from 1 to 2N . In addition, we permit a general dependence on time and
wavenumber in the (now 2N ⇥ 2N) matrix describing the linear evolution ⌦ab = ⌦ab(|k|, ⌘). This
extension can capture multiple models beyond ⇤CDM in addition to e↵ective models of clustering
dynamics. It has in general no analytic solution however, hence we will mostly need to solve the
dynamics numerically.

The equations of motion (2.3) can also in this case be solved perturbatively, at each order

furnished by 2N kernels F (n)

a labeled by the index a at order n:

 a(k, ⌘) =
1X

n=1

Z

q1,...,qn

�D(k � q1···n) en�⌘ F (n)

a (q1, . . . ,qn; ⌘) �0(q1; ⌘ini) · · · �0(qn; ⌘ini) , (2.5)

– 4 –

where �⌘ ⌘ ⌘ � ⌘ini and �0 is an initial condition that we discuss shortly. Note that due to the
assumed non-trivial time-dependence in the dynamics, we allow for a dependence on ⌘ in addition to
the wavenumbers q for the kernels. Inserting this solution into Eq. (2.3) yields the following recursive
solution at n-th order in perturbation theory:

(@⌘ + n)F (n)

a (q1, . . . ,qn; ⌘) + ⌦ab(k, ⌘)F (n)

b (q1, . . . ,qn; ⌘)

=
n�1X

m=1

h
�abc(k,q1···m,qm+1···n)F (m)

b (q1, . . . ,qm; ⌘)F (n�m)

c (qm+1, . . . ,qn; ⌘)
i

sym.
. (2.6)

Here, k =
P

i qi, and the right hand side is understood to be symmetrized with respect to all
permutations exchanging momenta in the {q1, . . . ,qm} set with momenta in the {qm+1, . . . ,qn} set
and normalized to the number of permutations.

Note that setting N = 1 and using the ⌦ab-matrix from Eq. (2.4) with ⌦m/f2 = 1 (EdS
approximation) in Eq. (2.6), we recover in the limit ⌘ini ! �1 the usual kernel recursion relations

with the replacements F (n)

1
! Fn and F (n)

2
! Gn.

We still need to specify suitable initial conditions in order to solve the above equations. Taking
⌘ini after recombination but long before non-linearities become important at the scales of interest, we
assume that the initial conditions for each fluid component is correlated, so that

 a(k, ⌘ini) = F (1)

a (k, ⌘ini) �0(k) , (2.7)

which holds for adiabatic initial conditions. Furthermore, we assume that �0 is a Gaussian random
field, so that we only need to specify the initial linear power spectrum h�0(k)�0(k0)i = �D(k+k

0)P0(k)

in order to compute correlations of  a’s. The initial linear kernels F (1)

a (k, ⌘ini) impose the relative
normalization for each perturbation and wavenumber. Deep in the linear regime ⌘ini ! 1 the higher
order initial kernels can be set to zero. In practice however, using ⌘ini after recombination, we find
that those n > 1 initial conditions work poorly because they excite transient solutions that do not
entirely decay by ⌘ = 0 (z = 0). We return to this issue below.

We are ultimately interested in the statistical properties of the fields  a(k, ⌘), in particular auto-
and cross power spectra

h a(k, ⌘) b(k
0, ⌘)i = �D(k + k

0)Pab(k, ⌘) . (2.8)

The perturbative expansion (2.5) combined with the Wick theorem yields as a result the loop expan-
sion of the power spectrum

Pab(k, ⌘) = P lin

ab (k, ⌘) + P 1-loop

ab (k, ⌘) + P 2-loop

ab (k, ⌘) + . . . . (2.9)

To compute loop corrections, we employ the numerical algorithm described in [57] (see also [58–60]).
In short, at L-loop it consists of integrating over L loop momenta using Monte Carlo integration (with
CUBA [78]) where at every integration point a set of (2L + 1)-order kernels needs to be evaluated
using the recursion relation (2.6). In general, there is no analytic solution of Eq. (2.6), therefore we
solve for the kernels numerically. We refer to [57] for further details on the algorithm.

2.3 Two-component fluid: CDM+baryons and massive neutrinos

We will employ the hybrid two-component fluid setup described in [57] to model structure formation
in massive neutrino cosmologies. In the following, we repeat the main elements of this setup for
convenience, but refer to [57] for details of the implementation.

In the hybrid two-component fluid model, the system is described linearly by the full Boltzmann
hierarchy until some intermediate redshift zmatch, after which the evolution is mapped onto a two-
component fluid, suitable for computing non-linear corrections (see also [61]). Baryons and CDM
comprise jointly one fluid component, which is coupled to the second component, the neutrinos, via
gravity. A fluid description of massive neutrinos is suitable at late times because the coupling to
higher moments in the Boltzmann hierarchy is suppressed by powers of T⌫/m⌫ . We may therefore
follow only the lowest moments of the hierarchy for the neutrinos, with an e↵ective sound velocity

– 5 –
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Newtonian Motion gauges

  3 gauges:  

๏ Gauge of Boltzmann code (Synchronous gauge, Poisson/Newtonian/longitudinal gauge)  

๏ Gauge matching gauge-independent observables (Comoving gauge, , with  ) 

๏ Gauge designed to get effectively Newtonian variables:  

• N-body, N-boisson, Newtonian Motion gauge (C. Fidler, C. Rampf, T. Tram, R. Crittenden, K. 
Koyama, D. Wands 2015, 2016, 2017)  

• particles follow same trajectories as if governed by Newtonian equations for single self-
gravitating fluid  

• absorbs effects of GR, radiation, even massive neutrinos, modified gravity… 

Self-consistency: perturbatively small coordinate transformation  -> weak-field approximation 
holds also in NM gauge  

Vtot = B HT = 0

( |H(NM)
T | ≪ 1)

#T(xα) , L(xα) T̃(xα) , L̃(xα)

(S) (NM) (C)  [or (S)]
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END
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When cosmology returns stronger bound than laboratory or astroparticle

๏ Summed neutrino mass 

๏ Light thermalised sterile neutrinos -> incompatibility with 
LSND and MiniBoone anomalies [Planck coll. 1807.06209] 

๏ Lower DM mass bound (assuming all DM is warm), e.g. for 
sterile neutrinos as DM -> incompatibility with 3.5keV X-ray 
line [Palanque-Delabrouille et al. 1911.09073] 

๏ DM scattering rate over photons or neutrinos [Becker et al. 
2010.04074, Ali-Haimoud et al. 1506.04745, Mosbech et al. 
2011.04206] 

๏ DM decay into non-electromagnetic product (less than 
3.8% after CMB decoupling) [Poulin et al. 1606.02073] 

Figure 8. Constraints from Ly-↵ forest in the RPSN (m⌫s , sin
2 2✓) parameter space. The iso-L contours are

displayed in black along with the corresponding value of L6. Gold squares indicate the set of parameters for
which we computed the P'(k) by solving the non-linear hydrodynamics. The black dot with error bar denotes
the right-handed interpretation of the 3.55 keV X-ray line in the stacked spectra of galaxy clusters, for which
we used m⌫s = 7.14± 0.07 keV and sin2 2✓ = 4.9+1.3

�1.6 ⇥ 10�11 as reported in [81]. The blue (resp. red) shade
encompasses models excluded by over 3� by the SDSS-only (resp. SDSS + XQ + HR) Ly-↵ forest power
spectrum. The absence of monochromatic X-ray lines (apart from the 3.55 keV signal) translate into upper
bounds in sin2 2✓(m⌫s): the green shade are models inconsistent beyond 3� with a compilation of X-ray data
from the Milky Way, Andromeda and other galaxies.

17

Baur et al. 1706.03118

DM sterile neutrino: mixing angle vs. mass 
(incl. possibility of resonant production)

X-ray

model-dependent by definition
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When cosmology returns weaker bound than laboratory and astroparticle

๏ Neutrino self-interaction rate (Fermi-like) 

๏ SI   

    = strongly-interacting model 

    = cosmological upper bound 

    = potential solution to  tension                    
[Kreisch et al. 1902.00534, Archidiacono et al. 1311.3873] 

๏ Lab constraints  

    = tau/meson decay, nuclei double-beta decay 

ν

H0

3
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Universal coupling
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�
)

(com
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�
)
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BBN
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FIG. 1. Bounds (shaded regions) on light neutrino-coupled mediators with flavor-universal couplings (top-left), and flavor-
specific couplings to ⌫e (top-right), ⌫µ (bottom-left), and ⌫⌧ (bottom-right). The bands labeled MI⌫ and SI⌫ are the preferred
regions from Eq. (2) [22] translated into the g�-m� plane. Also shown are constraints from ⌧ and rare meson decays [29–
32], double-beta decay experiments [33–35] (purple), and BBN (red). We combine the ⌧/meson decay and double-beta decay
constraints as “Lab Constraints” in the upper-left panel. BBN yields depend on the baryon density ⌘b; thick (thin) lines
correspond to the SI⌫ (MI⌫) preferred values of ⌘b. Nucleosynthesis constraints are stronger for complex scalar mediators
(dashed red) than for real scalars (solid red). If neutrinos are Dirac, their right-handed components equilibrate before BBN
above the dashed black line.

A. Mediators and �Ne↵

Eq. (3) induces � $ ⌫⌫ decays and inverse decays,
which can equilibrate � with neutrinos before neutrino-
photon decoupling at Tdec ⇠ 1 � 2 MeV. Here we show
that this necessarily happens for mediators that realize
Ge↵ in Eq. (2). Annihilation and scattering processes also
contribute, but the corresponding rates are suppressed by
additional powers of g�.

Vector Mediators: If Eq. (1) arises from a vector
particle �µ with mass m�, then at energies above m�

L �!
1

2
m

2

��
µ
�µ +

�
g��µ⌫

†
�̄
µ
⌫ + h.c.

�
, where g� is the

gauge coupling. �µ equilibrates before Tdec via ⌫⌫ $ �

if the corresponding thermally-averaged rate �⌫⌫!� ex-
ceeds Hubble when T = max(Tdec,m�):

�⌫⌫!�

H
⇠

g
2

�m
2

�MPl

max(Tdec,m�)3
> 108

Ge↵

(10 MeV)�2
, (7)

where MPl = 1.22⇥ 1019 GeV and we have used Eqs. (4)
and (6). This reaction is in equilibrium for all values
of couplings and masses of interest. As a result, �µ

has a thermal number density at Tdec in both MI⌫ and
SI⌫ scenarios. Counting degrees of freedom, we find
�Ne↵ = (8/7)(3/2) ' 1.7 assuming �µ remains rela-
tivistic throughout BBN; if �µ becomes non-relativistic

 coupling vs. mediator massνν̄ϕ

Blinov et al. 1905.02727
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When cosmology, laboratory and astroparticle bounds are complementary

Planck Collaboration: Cosmological parameters
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Fig. 46. Planck 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on
several annihilation channels (plotted using di↵erent colours), based on pann < 3.2 ⇥ 10�28 cm3 s�1 GeV�1. We also show the 2�
preferred region suggested by the AMS proton excess (dashed ellipse) and the Fermi Galactic centre excess according to four
possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into bb̄
(for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the 2� preferred region
suggested by the AMS/PAMELA positron fraction and Fermi/H.E.S.S. electron and positron fluxes for the leptophilic µ+µ� channel
(dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a
“thermal cross-section” given as a function of the mass by the black dashed line.

We also indicate the regions suggested by the possible DM
interpretation of several anomalies in indirect DM search data.
The 95 % CL preferred region for the AMS anti-proton excess
is extracted from Cuoco et al. (2017b,a). The DM interpretation
of the Fermi Galactic centre excess is very model-dependent
and, as in figure 9 of Charles et al. (2016), we choose to show
four results from the analyses of Gordon & Macias (2013),
Abazajian et al. (2014), Calore et al. (2015), and Daylan et al.
(2016). For the Fermi Galactic centre excess and the AMS anti-
proton excess, we only show results assuming annihilation into
bb̄, in order to keep the figure readable. About 50 % of the region
found by Abazajian et al. (2014) is excluded by CMB bounds,
while other regions are still compatible. The 95 % CL preferred
region for the AMS anti-proton excess is still compatible with
CMB bounds for the bb̄ channel shown in the figure, and we
checked that this is also the case for other channels.

8. Conclusions

This is the final Planck collaboration paper on cosmological pa-
rameters and presents our best estimates of parameters defining
the base-⇤CDM cosmology and a wide range of extended mod-
els. As in PCP13 and PCP15 we find that the base-⇤CDM model
provides a remarkably good fit to the Planck power spectra and
lensing measurements, with no compelling evidence to favour
any of the extended models considered in this paper.

Compared to PCP15 the main changes in this analysis
come from improvements in the Planck polarization analysis,
both at low and high multipoles. The new Planck polariza-
tion maps provide a tight constraint on the reionization op-
tical depth, ⌧, from large-scale polarization (and are consis-
tent with the preliminary HFI polarization results presented
in Planck Collaboration Int. XLVI (2016)). This revision to the
constraint on ⌧ accounts for most of the (small) changes in pa-
rameters determined from the temperature power spectra in this
paper compared to PCP15. We have characterized a number of

systematic e↵ects, neglected in PCP15, which a↵ect the polar-
ization spectra at high multipoles. Applying corrections for these
systematics (principally arising from errors in polarization e�-
ciencies and temperature-to-polarization leakage) we have pro-
duced high multipole TT,TE,EE likelihoods that provide sub-
stantially tighter constraints than using temperature alone. We
have compared two TT,TE,EE likelihoods that use di↵erent as-
sumptions to correct for polarization systematics and find con-
sistency at the <⇠ 0.5� level. Although the TT,TE,EE likelihoods
are not perfect, the Planck parameter results presented in this pa-
per can be considered accurate to within their error bars.

Our main conclusions include the following.
• The 6-parameter base-⇤CDM model provides a good fit to

the Planck TT, TE, and EE power spectra and to the Planck
CMB lensing measurements, either individually or in combina-
tion with each other.
• The CMB angular acoustic scale is measured robustly at

0.03 % precision to be ✓⇤ = (0.�5965 ± 0.�0002), and is one of
the most accurately measured parameters in cosmology, of com-
parable precision to the measurement of the background CMB
temperature (Fixsen 2009).
• The Planck best fit base-⇤CDM cosmology is in very good

agreement with BAO, supernovae, redshift-space distortion mea-
surements and BBN predictions for element abundance observa-
tions. There is some tension (at about 2.5�) with high-redshift
BAO measurements from quasar Ly↵ observations, but no stan-
dard extension of the base-⇤CDM cosmology improves the fit
to these data.
• The new low-` polarization likelihood tightens the reioniza-

tion optical depth significantly compared to the 2015 analysis,
giving ⌧ = 0.054 ± 0.007, suggesting a mid-point reionization
redshift of zre = 7.7 ± 0.7. This is consistent with astrophysi-
cal observations of quasar absorption lines and models in which
reionization happened relatively fast and late. We investigated
more general models of reionization and demonstrated that our
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DM annihilation cross-section vs. DM mass

Planck coll. 1807.06209

๏ DM annihilation 

๏ electromagnetic DM decay 
(incl. PBH evaporation) 

๏ DM-baryon scattering

8

FIG. 8: Constraints for DM-baryon scattering at the
95% CL in the m� � �0 parameter space from Planck
temperature + polarization and Lyman-↵ forest data

and our proposed extrapolation.

FIG. 9: Contours of T�mH/(THm�) in the �0 �m�

plane for the n = �2 scenario, evaluated at z = 106

(Lyman-↵ modes re-entry). For T�/m� ⌧ TH/mH , the
scaling �0 / (m� +mH) is valid (the solid curve

represents this limit). Data points (blue circles) are
95% CL results from our MCMC likelihood analysis.

R�,i =
ac0⇢i�i

m� +mi

v�,i. (13)

Here, c0 is a numerical factor shown in Table II in the
Appendix, and v�,i is the relative velocity of DM and
particle species i, that can be either unbound protons or
Helium.

Following the treatment of Refs. [32, 84], we can write
the DM-Helium momentum transfer rate as

FIG. 10: Similar to Fig. 9, but for the n = �4 scenario,
evaluated at z = 103 (time of decoupling of the CMB).

FIG. 11: Constraints on n = 0 DM-baryon scattering in
the m� � �H parameter space for underlying theory
with (solid lines) and without (dashed lines) Helium
scattering. Limits from direct detection searches are

quoted from Refs. [58, 63, 64, 72, 80–82].

R�,He =
ac0⇢He

m� +mHe

�Hev�,He

�
1 + (2µ�HeaHev�,He)

2
��2

' ac0⇢He

m� +mHe

�Hev�,He, (14)

and

�He = 4
µ
2
�He

µ
2
�H

�H . (15)

Here, µ�i = m�mi/(m� + mi) is the reduced mass
of the DM-i system, and aHe ' 1.5 fm is nuclear shell

9

length parameter for Helium [32, 83]. The simplification
in the second line is based on the assumption that we are
in the non-relativistic regime, v�,He ⌧ 1. Similarly, we
assume that all baryons share the same temperature and
peculiar velocity relative to DM, and use v�He & 1

2v�p.
The total momentum-transfer is then

R� =
ac0⇢bv�,HFHe

m� +mH

�0

& ac0nbv�,H

✓
mH�HFHe

m� +mH

+
mHe�He(1� FHe)

2(m� +mHe)

◆

' ac0⇢bv�,HFHe

m� +mH

�H

 
1 +

1� FHe

FHe

2µ3
�He

µ
3
�H

!
. (16)

This provides a straightforward, albeit conservative,
relation between our numerical variable �0 and the
“Helium-subtracted” cross-section �H in the case of spin-
independent n = 0 scattering. This improves our results
by as much as a factor of 20 in the high-mass regime.

Figure 11 shows the regions we have excluded at
the 2 � � level in the m� � �H parameter space com-
pared to regions explored by direct detection experiments
XENON-1T [72], LUX [58], XQC [71, 81], CRESST-
II[63], the CRESST ⌫-cleus Surface Run [64, 80] , and
the CDMS-I re-analysis [82]. While nuclear recoil ex-
periments provide high sensitivity at high masses, direct
detection limits towards sub-GeV dark matter are cur-
rently restricted to DM-electron scattering, [85–87], and
sensitivity of underground experiments in particular are
cut o↵ at high cross-sections by scattering through the
rock overburden [80, 88]. Cosmological observables are
thus especially complementary in this regime.

VIII. CASE STUDY: MILLICHARGED DM

We will now consider the scenario of millicharged DM,
explored previously in Refs. [33–39]. For this case, we
assume that all DM is charged under some hidden U(1)
gauge with a “dark photon”, which kinetically mixes
with the Standard Model photon such that DM particles
carry a fractional electromagnetic charge ✏e. The non-
relativistic DM-proton scattering thus follows a Coulomb
cross-section:

d�

d⌦
=

✏
2
↵
2
EM

4 sin4 ✓/2
µ
�2
�b

v
�4

, (17)

and we see that our n = �4 constraints are applicable
here.

To regulate the divergence at small scattering angles,
we impose a minimum scattering angle ✓min set by the
Debye screening length of the baryon plasma

✓min =
2✏↵EM

3T�D

, �D =

r
T

4⇡↵EMne

, (18)

FIG. 12: Constraints from this work on millicharged
DM scattering (corresponding to the n = �4 scenario)
in ✏�m� space compared to bounds from other areas:
cooling of giants, white dwarfs, and supernovae and
constraints on Neff from BBN and CMB [38, 73],
overclosure of the Universe [89] and various collider

experiments [35, 74, 75, 89]. We have assumed here that
all DM is millicharged.

such that we can apply our results

�(v) = 2⇡

Z
⇡

✓min

(1� cos(✓)) d✓ sin ✓
d�

d⌦
. (19)

We obtain the approximate numerical bound

✏ < 1.0⇥ 10�6
⇣
m�

GeV

⌘1/2 ⇣ µ�b

GeV

⌘1/2
. (20)

Constraints on millicharged DM particles in the low-
mass . 1 MeV regime come predominantly from cooling
dynamics of stars and supernovae, as well as constraints
on the e↵ective neutrino number Neff during Big Bang
Nucleosynthesis (BBN) and CMB epochs [38, 73]. Limits
arise also from collider experiments such as from LHC
and SLAC [35, 74, 75, 89]. An additional constraint
comes from rapid annihilation of high-mass DM induc-
ing premature closure of the universe [89]. Figure 12
compares the bounds from this work with the previously
mentioned results. As shown, CMB temperature and po-
larization data together with Lyman-↵ flux power spec-
trum measurements provide sensitive constraints to the
scenario where all DM carries a millicharge.

IX. CONCLUSIONS

In this work we consider a general class of elastic DM-
proton interaction scenarios where the scattering cross-
section scales phenomenologically as a power of relative
velocity between protons and dark matter. We perform
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