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The far-reaching scientific potential of
GW observations

e GW direct detection from Earth is a great theoretical and experimental achievement,
providing observational access to many new physical phenomena

e Astrophysics:

- Discovery of new astrophysical objects (black hole binaries...)

- Provide information on their population and characteristics

- Enlighten astrophysical phenomena (fast gamma-ray bursts, Active Galactic
Nuclei, supernovae explosions...)

- Probe the content of our galaxy and the environment of galactic centres

- Provide information on the formation and growth of massive black holes and
massive black hole binaries

- All this potential would be enhanced by the detection of electromagnetic
counterparts

e Cosmology:
- Expansion of the universe, dark energy, Hubble tension
- Nature of Dark Matter (primordial black holes, black holes accretion...)
- Cosmological structure formation, galaxy mergers, probe of LambdaCDM
- Early universe before Recombination in general



The far-reaching scientific potential of
GW observations

GW direct detection from Earth is a great theoretical and experimental achievement,
providing observational access to many new physical phenomena

Fundamental physics:

- Test General Relativity in the strong field regime (Post Newtonian terms, tests of
the horizon, GW polarisations, space-time around black holes...)

- Test of General Relativity at cosmological scales (GW propagation, GW lensing...)

- High energy and beyond the standard model physics (phase transitions:
Electroweak scale, QCD scale, cosmic strings; Inflation...)

- Matter in extreme conditions (neutron stars equation of state, elements
synthesis...)

Data Analysis (Bayesian methods, noise and foreground subtraction, machine
learning...)

Detectors (stabilisation, cryogeny, quantum limits, free fall, atom interferometry...)

Non exhaustive list and non exhaustive review
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CMB and BBN bounds
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CMB anisotropies and polarisation
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CMB anisotropies and polarisation
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CMB anisotropies and polarisation

GW observatories probe at higher frequencies than CMB -> smaller scales ->
closer to the end of inflation

This should be used as an opportunity to test inflation far from CMB scales
However, the standard expectation is that the power spectrum gets smaller at
smaller scales! Is it instead possible to enhance it?
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CMB anisotropies and polarisation

e GW observatories probe at higher frequencies than CMB -> smaller scales ->
closer to the end of inflation

e This should be used as an opportunity to test inflation far from CMB scales

e However, the standard expectation is that the power spectrum gets smaller at

smaller scales! Is it instead possible to enhance it?
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Pulsar timing arrays
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Pulsar timing arrays

The SGWB from super-massive black hole binaries at the centre of galaxies is the
best candidate source for this signal, but there is room for a primordial SGWB

 Signal in mild tension with the astrophysical predictions: higher amplitude and
shallower spectral slope

NANOGrav
Afzal et al arXiv:2306.16219
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Pulsar timing arrays

The SGWB from super-massive black hole binaries at the centre of galaxies is the
best candidate source for this signal, but there is room for a primordial SGWB

Signal in mild tension with the astrophysical predictions: higher amplitude and

shallower spectral slope

The pure SMBHB interpretation points towards high merger rate, efficient
accretion, possibly strong environmental interaction and eccentricity...

No homogeneous and isotropic
SGWB at high frequency: less
SMBHBSs, steeper slope,
discreteness with spikes from
loudest SMBHBs

Interaction with the binary
environment makes hardening
stronger and suppresses SGWB
power at low frequency
Eccentricity enhances GW
emission at higher frequencies

GW Strain (h,)

L.Z. Kelley et al, arXiv:1702.02180
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Pulsar timing arrays

The SGWB from super-massive black hole binaries at the centre of galaxies is the
best candidate source for this signal, but there is room for a primordial SGWB

 Signal in mild tension with the astrophysical predictions: higher amplitude and
shallower spectral slope

» However, one can also interpret this tension as another origin for the signal

and/or a contribution from other SGWB generation processes
CC et al, ArXiv:2406.02359

Many primordial SGWBs possible, but
important to point out that PTAs offer
the possibility to probe the
QCD energy scale

107°Hz < f < 107" Hz —p 1 MeV < T, S1GeV
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Parameter to which the signal
amplitude is inversely proportional



Pulsar timing arrays

The SGWB from super-massive black hole binaries at the centre of galaxies is the
best candidate source for this signal, but there is room for a primordial SGWB

 Signal in mild tension with the astrophysical predictions: higher amplitude and

shallower spectral slope

» However, one can also interpret this tension as another origin for the signal
and/or a contribution from other SGWB generation processes

Assessing the signal
origin using spectral
shape only has its limits

Bayes factor

All new physics models except stable
cosmic strings fit the signal better
than the baseline SMBHB model
Models in which the two signals are
present do not improve the fit quality
consistently a part in a few cases
HOWEVER! Bayes factors do not
account for the huge theoretical
uncertainties on the models and are
prior dependent

10 -

10

101

New Physics

[ [

s Afzal et al arXiv:2306.16219

L]
¢ New Physics + SMBHB
|

'NANOGrav =

Talk by Atkins and Di Ferrante




The SGWB from super-massive black hole binaries at the centre of galaxies is the

Pulsar timing arrays

best candidate source for this signal, but there is room for a primordial SGWB

 Signal in mild tension with the astrophysical predictions: higher amplitude and
shallower spectral slope

» However, one can also interpret this tension as another origin for the signal
and/or a contribution from other SGWB generation processes

Assessing the signal
origin using spectral
shape only has its limits
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Pulsar timing arrays

EPTA, arXiv:2306.16226

Maybe already some evidence for a continuous wave 1024 L 1jyear
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Figure 1. Savage-Dickey Bayes factors for the CW+CURN model versus the CURN model as a function of frequency (black).

Also shown are Bayes factors when excluding PSR J1713+0747 (red, only computed for fcw > 24 nHz) and Bayes factors

based on a resampled posterior that takes into account the presence of HD correlations in the common red noise process, i.e., .

CW+HD versus HD (orange, only computed for 2.1 nHz < fgw < 5.9 nHz). Shaded regions show the 1-o uncertainties. Depta et a]-7 aerV.2407. 1 4460
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FIG. 4. 95% C.L. upper bounds on C, assuming EPTA-like noise (red) and SKA-like noise (green) for different numbers of pulsars
and T, = 15 yr. We sample 10 realizations of noise and pulsar locations in the sky (with uniform distribution on the sphere). The gray
lines indicate the result adopting the prior |c,,,| < 5/(4x), while the blue reports the upper bound just drawing from the same uniform
prior. In the bottom row, due to the increased sensitivity, such a prior plays no role.



Pulsar timing arrays

Slide from Gilles Theureau

https:/ /indico.cern.ch/event/ 1267450 /contributions /5887065 /attachments /2872403 /5029414 /

IPTA Collaboration,
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A completely new frequency window with an
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Assuming a model independent spline interpolation, at redshift z < 3:
10% error on Hubble parameter (2% in 10 years)

Mangiagli et al arXiv:2312.04632
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LISA

100°Hz < f < 0.1Hz == 10GeV < T, <10°GeV

Talk by A. Rajantie
Talk by A. Roper Pol

Progress is needed:

One can constrain models but not infer them,
because big degeneracy between signal
characteristics and model parameters -> reduce
degeneracy!

Better prediction of the signal is required at every
level: from the effective potential to the PT
parameters to the bubble and fluid thermodynamics
to the spectral shape of the signal

Complementarity with colliders must be thoroughly
studied

logyo (1% / GeV)

CC et al, ArXiv:2406.02359
12 =

loglo SNR
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——mee T I

logyo (8/H)

Parameter to which the signal
amplitude is inversely proportional



LISA

talk by S. Zell

Mreulo) Meg [Mo]
]6)15 1024 1027 1030 1033 ©
100+ s 107 10 10 10 10" 10 10® 107 107"
§ 10 ;‘ 17 JUUUURUTUTU |JurUUrTUT LRuUTUUUTUTU JuruUuTUTU LTI JuUULUTUTY JuuUUUUTUTU (11
Lo i 1077
S A 107
102 (T 0 107
""" 5= 10
= =
5 S 1071
<& ~
=
10_4 i 10 12g
, https:/ /indico.math.cnrs.fr/event/ 5766 / 1043%
1051 tions/5153/attachments/2801/3587 |Paris2021.pdf ;-1 — Py(k) = A, x ko(k — k)
EJ ] 10_153 — Pe(k) = A¢ x exp [—log(2k/3k*)2/202]
_6 I

16‘4 | ”1'0‘3 1072 107! E
f [Hz]
N. Bartolo et al, arXiv:1810.12218, arXiv:1810.12224

1
107

! ! | ! ! | ! 1 | ! ! | ! ! |
10718 10712 1079 1076 1073 10° 10°
M PBH [M @]


https://indico.math.cnrs.fr/event/5766/contributions/5153/attachments/2801/3587/Paris2021.pdf
https://indico.math.cnrs.fr/event/5766/contributions/5153/attachments/2801/3587/Paris2021.pdf

h?Qaw

10-7:—
010
013 |
016 |

10—19 |

DeciHertz

| | ;-I-;-I--- | | I | |
CMB BBN ’
PTA
’ PTA
LISA
wanck SKA
\LiteBird
y 0—19 10—14 10—9 10—4 10




DeciHertz

Several detector concepts have been proposed

| DECIGO-like interferometers
(e.g. M. Arca Sedda et al, arXiv:2104.14583)

——— DO-Conservative
10~° | = DO-Optimal
— ALIA

DECIGO Atom interferometry (e.g. Abend et al, arXiv:2310.08183)

100k

108 &

design

0.001 0.010 0.100 1 10 2% 3
f [Hz] 1

Lunar GW antenna (Ajith et al, arXiv:2404.09181)
1071
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Science case:

e Stellar binaries (white dwarfs, neutron stars...)
S S  Intermediate BHBs + multi-band (full probe of
L 1072 BH masses in the universe)

 Early source localisation for Earth-based:

Sound waves from FOPT = Cosmic Strings multi-messenger and test of the universe
1014 —— R.,H,=0.1, T, = 10°GeV Gu=10"12 .
R.H, =1,T, = 10°GeV Gu=10"14 €xXpansion
-1 \ 1 1
107 4y par p pa - > e — ¢ FEarly Universe signals



DeciHertz

103
| Just one example:

weakly first order PTs at the EW to TeV scale

BIH «

102 .

A DO detector can possibly probe the most
populated region of parameter space

101 -
Not probed by HL-LHC

{1 ¢ Will be probed by HL-LHC \

1071

a

LISA CosWG arXiv:1910.13125

Science case:

e Stellar binaries (white dwarfs, neutron stars...)

 Intermediate BHBs + multi-band (full probe of
BH masses in the universe)

 Early source localisation for Earth-based:
multi-messenger and test of the universe
expansion

e Early Universe signals




Earth-based 3G detectors: ET and CE
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Earth-based 3G detectors: ET and CE

Cosmology with Earth-based detectors is already a reality

LVK has already provided constraints on HO with both
one event with counterpart and with dark sirens
However, most probably no cosmological SGWB
detection with LVK because masked by astrophys1cal

p(Ho|x) [km~' s Mpc]

foreground detection, expected for ~2030

—=—- Upper Limit with NSBH ---- Design A+
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~2035 3rd generation projects:
Einstein Telescope and Cosmic Explorer,
with a factor up to 20 improvement in
sensitivity will be a game changer
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Earth-based 3G detectors: ET and CE

Talk by M. Maggiore

Abac et al, arXiv:2503.12263

2 Cosmology with ET

2.1

2.2

2.3

2.4

Stochastic gravitational-wave backgrounds

2.1.1 Definition and characterisation
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Aggarwal et al, arXiv:2501.11723

Energy spectrum of grav. waves h*Qaw
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High-frequenc
Aggarwal et al, arXiv:2501.11723 Quite a few interesting sources?
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