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Pulsar Timing Arrays
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The Astrophysical SGWB
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The Cosmological SGWB

e Abundance of models

* We focus on a simple power-law profile for proof of concept

faw(f) =4 ()"

 However our framework is readily extendible to any model

But what if there are multiple sources contributing to the SGWB?
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Current methods

* Efforts made in interferometer experiments to reduce astrophysical foreground to
identify cosmological background [zhong et al. 2024]
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* For PTAs, usual Bayesian analysis struggles to make progress.
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Current methods

Uncertainties in spectral index and amplitude of an additional primordial process on top of Astrophysical background
[Kaiser et al. 2022]
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What can we learn?

* Improved cosmological and astrophysical parameter bounds
* Relatively inexpensive tests

* Holy Grail: Evidence for a cosmological source of the SGWB?

Is there a way to go beyond traditional Bayesian analysis?



Deep Learning

* Compute has become orders of magnitude cheaper/faster
* Intractable problems from 5 years ago are now cheap to solve!

* Primary goal is to bring recent advancements with structured
pipelines to make the toolsets available to physicists



Why Deep Learning?
e Can extract patterns without needing overspecified priors

* The beauty of this methodology is that all you need is the data!
(The CNN does not need to be physics informed)

* We use a 2D Convolutional Neural Network to classify and perform
parameter estimation on the matrix of timing residuals for a synthetic
dataset



2d input-tensor [psr, residuals]
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Sequential (conv2d, BatchNorm, ReLLU)

Y

ResNet Block (x2)
(conv2d, BatchNorm) — Shrinkage
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AdaptiveAvgPool2d
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Dropout (0.2)
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Linear (128 — 1)

Linear (128 — 2)

Y

¥

Sigmoid

regression output

Y

classification output

* Chosen because SGWB leaves a feint but
global fingerprint across all pulsars

* Noise however is mostly local!

* Network specializes for cross-pulsar
features



Classification confidence
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Interpretability

The myth that neural networks are black boxes is no longer true!

e Several interpretability methodology can now be leveraged e.g.

* Integrated gradients, Layer Grad CAM, UMAP, Autoencoders etc.



Interpretability

Input Image

0 200 400 600 800 1000
Observation Number



Interpretability
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Interpretability
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Interpretability

rl.c2 le—7
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Interpretability

r2.cl le—7
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Interpretability
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Interpretability

Layer Grad-CAM le—6
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Coming Soon...

* The paper!
* Improvements on current synthetic data generation models in PTAs

* An open-source ML pipeline for Cosmological model classification and
parameter estimation in PTAs



Thank you for listening! |



	Slide 1: Disentangling the Stochastic Gravitational Wave Background with Deep Learning
	Slide 2: Pulsar Timing Arrays
	Slide 3: The Astrophysical SGWB
	Slide 4: The Cosmological SGWB
	Slide 5
	Slide 6: Current methods
	Slide 7: Current methods
	Slide 8: What can we learn?
	Slide 9: Deep Learning 
	Slide 10: Why Deep Learning?
	Slide 11
	Slide 12: Classification confidence
	Slide 13: Interpretability
	Slide 14: Interpretability
	Slide 15: Interpretability
	Slide 16: Interpretability
	Slide 17: Interpretability
	Slide 18: Interpretability
	Slide 19: Interpretability
	Slide 20: Interpretability
	Slide 21: Coming Soon...
	Slide 22: Thank you for listening!

