Disentangling the Stochastic Gravitational Wave Background with Deep Learning

CosmoFONDUE 2025

Bill Atkins Swansea University

Matthew Di Ferrante Independent

Pulsar Timing Arrays

[J. Rowe Animations]

The Astrophysical SGWB

• Total present day GW energy density distributed over redshift [Phinney, E.S. 2001]

$$ho_c\,\Omega_{
m GW}(f_d) = \int_0^\infty dz rac{N(z)}{1+z} \Biggl(f_s rac{d{\cal E}_{GW}^{(s)}}{df_s}\Biggr)_{f_s\,=(1+z)f_d}$$

• E.g. consider binaries in circular orbit:

$$f_s rac{d{\mathcal E}_{
m GW}}{df_s} = f_s rac{\pi}{3G_N} rac{(G_N {\mathcal M})^{5/3}}{(\pi f_s)^{1/3}}$$

In reality this varies!
$$\Omega_{
m GW}(f_d) \propto f_d^{2/3}$$

The Cosmological SGWB

Abundance of models

• We focus on a simple power-law profile for proof of concept

$$\Omega_{ ext{GW}}(f) = \mathcal{A}\left(rac{f}{f_*}
ight)^lpha$$

However our framework is readily extendible to any model

But what if there are multiple sources contributing to the SGWB?

Current methods

• Efforts made in interferometer experiments to reduce astrophysical foreground to identify cosmological background [Zhong et al. 2024]

• For PTAs, usual Bayesian analysis struggles to make progress.

Current methods

Uncertainties in spectral index and amplitude of an additional primordial process on top of Astrophysical background

[Kaiser et al. 2022]

What can we learn?

Improved cosmological and astrophysical parameter bounds

Relatively inexpensive tests

Holy Grail: Evidence for a cosmological source of the SGWB?

Is there a way to go beyond traditional Bayesian analysis?

Deep Learning

Compute has become orders of magnitude cheaper/faster

• Intractable problems from 5 years ago are now cheap to solve!

 Primary goal is to bring recent advancements with structured pipelines to make the toolsets available to physicists

Why Deep Learning?

Can extract patterns without needing overspecified priors

• The beauty of this methodology is that all you need is the data! (The CNN does not need to be physics informed)

 We use a 2D Convolutional Neural Network to classify and perform parameter estimation on the matrix of timing residuals for a synthetic dataset

 Chosen because SGWB leaves a feint but global fingerprint across all pulsars

Noise however is mostly local!

Network specializes for cross-pulsar features

Classification confidence

The myth that neural networks are black boxes is no longer true!

Several interpretability methodology can now be leveraged e.g.

• Integrated gradients, Layer Grad CAM, UMAP, Autoencoders etc.

Coming Soon...

The paper!

Improvements on current synthetic data generation models in PTAs

 An open-source ML pipeline for Cosmological model classification and parameter estimation in PTAs

