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f(R,Lm) Theory of Gravity

The action for f(R,Lm) gravity, proposed by Harko and Lobo, is:

S =

∫
f(R,Lm)

√
−g d4x, (1)

where f is a general function of the Ricci scalar R and the matter Lagrangian Lm.

The Ricci scalar is defined as:
R = gijRij . (2)

The Ricci tensor is given by:

Rij = ∂kΓ
k
ij − ∂jΓ

k
ki + Γλ

ijΓ
k
λk − Γk

jλΓ
λ
ki. (3)
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f(R,Lm) Theory of Gravity

Varying the action with respect to the metric yields the field equations:

fRRij −
1

2
(f − fLmLm)gij + (gij□−∇i∇j)fR =

1

2
fLmTij . (4)

Here, the partial derivatives of f are:

fR =
∂f(R,Lm)

∂R
,

fLm =
∂f(R,Lm)

∂Lm
,

□ = ∇i∇i.

The energy-momentum tensor is defined by:

Tij = gijLm − 2
∂Lm

∂gij
. (5)
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f(R,Lm) Theory of Gravity

The covariant divergence of the energy-momentum tensor is given by:

∇iTij = 2∇i ln(fLm)
∂Lm

∂gij
. (6)

Contracting the field equations leads to the trace relation:

RfR + 3□fR − (f − fLmLm) =
1

2
fLmT, (7)

where T = gijTij is the trace of the energy-momentum tensor.

The d’Alembertian operator □ acting on a scalar F is defined as:

□F =
1√
−g

∂i(
√
−ggij∂jF ).
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Equation of Motion in f(R,Lm)

Equation of Motion in f(R,Lm) Gravity

Anisotropic cosmological models introduce extra degrees of freedom and richer dynamics
compared to isotropic ones like FLRW, though they are more challenging to analyze.
We consider a homogeneous and anisotropic LRS Bianchi Type-I spacetime:

ds2 = −dt2 +A2(t)dx2 +B2(t)(dy2 + dz2), (8)

where A(t) and B(t) are scale factors in cosmic time.
For A(t) = B(t), this reduces to the standard FLRW metric.
The Ricci scalar for this metric is:

R = −2

[
Ä

A
+ 2

B̈

B
+ 2

ȦḂ

AB
+

Ḃ2

B2

]
. (9)

Assuming a perfect fluid distribution, the energy-momentum tensor is:

Tij = (p+ ρ)uiuj + pgij , (10)

where ρ is energy density, p is pressure, and ui = (1, 0, 0, 0) is the comoving four-velocity.
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Equation of Motion in f(R,Lm)

Equation of Motion in f(R,Lm) Gravity

The modified Friedmann-like field equations in f(R,Lm) gravity for the Bianchi Type-I
metric are given as:

−

(
Ä

A
+ 2

ȦḂ

AB

)
fR − 1

2
(f − fLmLm)− 2

Ḃ

B
ḟR − f̈R =

1

2
fLmp, (11)

−

(
B̈

B
+

Ḃ2

B2
+

ȦḂ

AB

)
fR − 1

2
(f − fLmLm)−

(
Ȧ

A
+

Ḃ

B

)
ḟR − f̈R =

1

2
fLmp, (12)

−

(
Ä

A
+ 2

B̈

B

)
fR − 1

2
(f − fLmLm)−

(
Ȧ

A
+ 2

Ḃ

B

)
ḟR =

1

2
fLmρ. (13)

Here, fR = ∂f/∂R, fLm = ∂f/∂Lm, and dots denote derivatives with respect to cosmic
time t.
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Cosmological Solutions for f(R,Lm) Gravity

Cosmological Solutions for f(R,Lm) Gravity

We consider a specific form of the function:

f(R,Lm) =
R

2
+ Lξ

m + ζ, (14)

where ξ and ζ are constants. GR is recovered when ξ = 1 and ζ = 0.

Assuming a dust-like Universe (Lm = ρ), the modified field equations become:

2
B̈

B
+

Ḃ2

B2
− ζ − (1− ξ)ρξ = ξρξ−1p, (15)

Ä

A
+

B̈

B
+

ȦḂ

AB
− ζ − (1− ξ)ρξ = ξρξ−1p, (16)

Ḃ2

B2
+ 2

ȦḂ

AB
− ζ = (1− 2ξ)ρξ. (17)
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Cosmological Solutions for f(R,Lm) Gravity

Cosmological Solutions for f(R,Lm) Gravity

To solve the system, we use a deceleration parameter approach as in Tiwari et al.[16],
where:

q =
−aä

ȧ2
, with q(t) = α− β

H
. (18)

The average scale factor is:
a = (AB2)1/3, (19)

which solves to:

a =

(
α+ 1

βc
eβt + c1

) 1
α+1

. (20)
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Cosmological Solutions for f(R,Lm) Gravity

Cosmological Solutions for f(R,Lm) Gravity

figureEvolution of the scale factor a(t)

with cosmic time t.

The evolution of the scale factor a(t) provides
insight into the Universe’s expansion dynamics.

Initially, the Universe exhibits slower expansion,
corresponding to a decelerated phase dominated by
matter.

As time progresses, the scale factor increases
rapidly, signaling a transition to an accelerated
expansion phase.

This late-time acceleration aligns with current
cosmological observations of dark energy-driven
expansion.
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Some Physical Parameters

Cosmological Solutions for f(R,Lm) Gravity

Using the power-law relation, the metric functions become:

B(t) =

(
α+ 1

βc
eβt + c1

) 3
(α+1)(2+n)

, (21)

A(t) =

(
α+ 1

βc
eβt + c1

) 3n
(α+1)(2+n)

. (22)

The line element now simplifies to:

ds2 = −dt2 +A2(t)dx2 +B2(t)(dy2 + dz2), (23)

showing anisotropic expansion with time-dependent scale factors.
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Some Physical Parameters

Hubble Parameter

Redshift z is related to the scale factor via:

a =
1

1 + z
, with a = 1 at z = 0.

For the model f(R,Lm) = R
2 +Lξ

m + ζ, the Hubble
parameter becomes:

H(z) =
β

α+ 1

[
1− c1(1 + z)α+1

]
,

H0 =
β

α+ 1
(1− c1).

Model predictions are compared with 57
observational H(z) data points from DA and BAO
methods.

figure: Best-fit curve of H(z) vs

redshift. Red: model; green diamonds:

DA; red circles: BAO.
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Some Physical Parameters

Best-fit values:

α = 0.542+0.019
−0.022

β = 52.9+2.3
−2.7

c1 = −0.877+0.055
−0.058

H0 = 64.39+0.04
−0.47 km/s/Mpc

Model accuracy:

R2 = 0.9321
RMSE = 11.0716

ΛCDM comparison:

H(z) = H0

√
Ωm0(1 + z)3 +ΩΛ0

where H0 = 67.8, Ωm0 = 0.3,
ΩΛ0 = 0.7.

Figure: Confidence contours for α, β, and c1 at 1σ and 2σ
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Some Physical Parameters

Deceleration Parameter in Redshift

From the scale factor–redshift relation, the
deceleration parameter is expressed as:

q(z) = α− α+ 1

1− c1(1 + z)α+1

This function describes the evolution of the
expansion rate — identifying transitions between
deceleration and acceleration.

The parameters used are:

α = 0.542, c1 = −0.877, H0 = 64.39 km/s/Mpc
figurePlot of q(z) vs redshift z.
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Some Physical Parameters

Deceleration Parameter in Redshift

The plot of q(z) shows that at low redshift (z ≈ −1), q ≈ −1, indicating an accelerating
phase.

As z increases, q(z) transitions to positive values, indicating a decelerating phase in the
early universe.

The red dashed line at q = 0 marks the boundary between acceleration and deceleration.

The black dot marks the transition point around z ≈ 0.5.

Shaded regions:

Blue: uncertainty due to α
Red: uncertainty due to c1

The model yields:
R2 = 0.9321, RMSE = 11.0716

showing strong agreement with observational data and robustness of parameter
constraints.
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Some Physical Parameters

Energy Density as a Function of Redshift

The energy density ρ(z) is derived as:

ρ(z) =

{
9β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(1− 2ξ)(α+ 1)2

(1 + 2n)(1 + z)2(α+1) − ζ

1− 2ξ

} 1
ξ

This describes how energy density evolves with
redshift based on model parameters.

figureEnergy density ρ(z) vs redshift.
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Some Physical Parameters

Energy Density as a Function of Redshift

The plot of energy density illustrates how ρ(z) increases rapidly as redshift increases,
consistent with a denser early universe.

The blue curve shows the best-fit density evolution; shaded regions indicate uncertainty:

Blue shaded: uncertainty from α
Red shaded: uncertainty from β
Green shaded: uncertainty from c1

The growth in ρ(z) is highly sensitive to c1, especially at high z, which corresponds to
early universe epochs.

This behavior supports the standard picture of structure formation, where the universe
was more compact and energetic at earlier times.

The expression fits well with observational trends and reflects early-universe matter
dominance.
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Some Physical Parameters

Pressure as a Function of Redshift

The pressure p(z) is given by the expression:

p(z) =
1

ξ

{
9β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(1− 2ξ)(α+ 1)2

(1 + 2n)(1 + z)2(α+1) −
ζ

1− 2ξ

} 1−ξ
ξ

×
{

6β2
[
(1 + z)−(α+1) − c1

]
(2 + n)(α+ 1)

(1 + z)α+1

+ [9− 2(α+ 1)(2 + n)]
3β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(α+ 1)2

(1 + z)2(α+1)

−ζ − (1− ξ)

[
9β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(1− 2ξ)(α+ 1)2

(1 + 2n)(1 + z)2(α+1) −
ζ

1− 2ξ

]}Pressure p(z) vs redshift.
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Some Physical Parameters

Pressure as a Function of Redshift

The above Figure shows the behavior of pressure p(z) across redshift z.

At higher redshifts, pressure becomes more negative — indicating dark energy dominance.

The green-shaded region dominates at high z, highlighting the strong sensitivity of
pressure to c1 during early cosmic times.

This behavior aligns well with the theoretical expectation of negative pressure driving
accelerated expansion in the late universe.

Prof. Dr. Dnyaneshwar D. Pawar f(R,Lm) Gravity CosmoFondue, 12, Jun 2025 18 / 26



Some Physical Parameters

Equation of State Parameter ω(z)

The equation of state (EoS) parameter ω(z) is:

ω(z) = −1 + ξ +
1

ξ

{
9β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(1− 2ξ)(α+ 1)2

(1 + 2n)(1 + z)2(α+1) −
ζ

1− 2ξ

}−1

×
{

6β2
[
(1 + z)−(α+1) − c1

]
(2 + n)(α+ 1)

(1 + z)α+1 + [9− 2(α+ 1)(2 + n)]

×
3β2

[
(1 + z)−(α+1) − c1

]2
(2 + n)2(α+ 1)2

(1 + z)2(α+1) − ζ

}
EoS

parameter ω(z) vs redshift.
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Some Physical Parameters

Equation of State Parameter ω(z)

Figure 19 illustrates the evolution of the EoS parameter ω(z) with redshift z.

The shaded regions indicate uncertainties due to:

Light blue: variation in α
Pink: variation in β
Green: variation in c1

At low redshift (z ≈ 0), ω ≈ −1, consistent with dark energy behavior.

As z increases, ω(z) rises gradually, indicating a transition toward matter-dominated
conditions.

The narrow shaded bands reflect stable model predictions with well-constrained
parameters.
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Some Physical Parameters

Statefinder Diagnostic : The Parameter s(z)

The statefinder parameters are defined as:

r =

...
a

aH3
, s =

r − 1

3
(
q − 1

2

)
The expression for s(z) is:

s(z) =
2

−3 (3 + (2α− 1)c1(1 + z)α+1) (1− c1(1 + z)α+1)2

×
{
(1 + z)α+1(α+ 1)2

(
(1 + z)−(α+1) − c1

)
− 3α(α+ 1)

(
(1 + z)−(α+1) − c1

)2
(1 + z)2α+2

+ α(2α+ 1)
(
(1 + z)−(α+1) − c1

)3
(1 + z)3α+3

−
(
1− c1(1 + z)α+1

)3 }
figurePlot of s(z) vs redshift z.
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Some Physical Parameters

Comparison of r and s

The statefinder pair (r, s) helps distinguish between
various dark energy models.

The point (r, s) = (1, 0) corresponds to the
standard ΛCDM model.

The region where r < 1 and s > 0 corresponds to
the Quintessence model.

figurePlot of r(z) vs s(z)
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Some Physical Parameters

Om Diagnostics

The Om diagnostic helps distinguish dark
energy models via expansion rate.

Defined as:

Ω(z) =

(
H(z)
H0

)2
− 1

(1 + z)3 − 1

Calculated Om diagnostics:

Ω(z) =
2c1
[
1− (1 + z)α+1

]
+ c21

[
(1 + z)α+1 − 1

]
(1− c1)2 ((1 + z)3 − 1) figurePlot of Ω(z) vs redshift z.
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Some Physical Parameters

Discussion and Conclusion

A LRS Bianchi Type-I cosmological model with perfect fluid was investigated in the
f(R,Lm) gravity framework.

Exact field equations were derived and cosmological parameters like energy density,
pressure, equation of state (EoS), Hubble parameter, deceleration parameter, expansion
scalar, and shear scalar were evaluated.

The Hubble parameter H(z) was fitted to 57 observational data points with an
R2 = 0.9321, showing strong agreement with the OHD data.
Best-fit parameters:

α = 0.542+0.019
−0.022, β = 52.9+2.3

−2.7

c1 = −0.877+0.055
−0.058, H0 = 64.39+0.04

−0.47 km/s/Mpc

The model’s predictions are consistent with the standard ΛCDM model, particularly at
low redshifts.

The deceleration parameter q(z) shows a transition from deceleration to acceleration near
z ≈ 0.5, supported by confidence regions in α and c1.
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Some Physical Parameters

Discussion and Conclusion

Evolution of physical parameters:

ρ(z): Increases with redshift – denser early universe.
p(z): Transitions to negative values – consistent with dark energy.
ω(z): Evolves from −1 (dark energy) toward 0 – indicating Quintessence phase.

Statefinder diagnostic:

The pair (r, s) = (1, 0) confirms ΛCDM consistency.
For best-fit values, model indicates Quintessence-like behavior for r < 1, s > 0.

Om diagnostic:

Ω(z) closely matches ΛCDM at higher z.
Deviations near z = 0 suggest rapid late-time expansion.

Overall, the model agrees with current cosmological observations and provides a viable
alternative to ΛCDM within modified gravity frameworks.
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Some Physical Parameters

Thank You!
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