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Starobinsky inflation
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= Prototypical of the favoured models: V(¢) = M* (1 —e V3 MPl)

Classical slow-roll evolution

= FLRW + Klein-Gordon equation

P = £ (/24 V(9)
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a
d+3H)+V'(¢) =0
= Time measured in numbers of e-folds N = Ina

= H = a/a ~ cste hence quasi de Sitter
evolution

= Quantization of linear perturbations d¢p —
cosmological predictions
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Starobinsky inflation
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= Prototypical of the favored models: V(¢) = M* (1 —e V3 MPl)

Quantum regime 12 Semi-classical domain Quantum domain |
¢+ /Mp

= Quantum fluctuations dominate
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] primordial curvature perturbations can " .
be generated
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= Primordial Black Holes, scalar induced GWs, M,

etc .
If our universe were born at ¢ > ¢qw?

= Ultra-slow-roll (USR) phases
( )p = Semi-classical evolution from ¢ to

= Need for a non-perturbative approach —> b ~ 1017 e-folds

stochastic inflation formalism .
= Quantum domain may alter structures only on

distances d > 101016 Gpc



Eternal inflation

Why bothering?

= Access to largest length scales of our universe

= Super-Hubble fluctuations may create Qxk, 2

Eternal inflation and multiverse structure

= Large quantum fluctuations counteract
classical drift

= Inflation is eternal: some regions of the
Universe always inflate i.e. never reach ¢qw

Can Stochastic Inflation still provide some insights?



Stochastic Inflation formalism [Starobinsky:1986, Goncharov:1987, Linde:1993]

An effective field theory in curved space-time

= Separation between large and small length scales

~ N A A dk k ~ —ik-x A~ * ik-x
¢ = ¢eg + Puv :¢Cg+/w (E) [akSOk(N)e " +a;@k(N)ek ]
= Dynamics of the coarse-grained field
Obes o 2
8Ng = ch + E#P

= In quasi-de Sitter spacetime, quantization over Bunch-Davies vacuum

= At k, < aH, quantum operator — Gaussian
noise

= Langevin equation for the coarse-grained field

dpeg _ V'(¢eg) | H
ng N 3H2g * 27r§(N)

end of inflation

first passage time problem

(1)



Extracting curvature fluctuations

Separate universe picture Stochastic-0 N formalism
= J¢eq create inhomogeneities in regions of size = Curvature perturbation ( is the local amount
kot of expansion
= Spacetime as an ensemble of independent, Ceg = N — (N)
locally homogeneous and isotropic Hubble
sized patches = Non-perturbative approach
¢
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Stochastic inflation in the semi-infinite flat potential

= For ¢ > ¢qw, pure Brownian motion with diffusion G = H/(27)
= Forward transition probability from Fokker-Planck equation with absorbing boundary at ¢qw

1 (p—d0)? (p—20qw+d0)?

e 2GZ(N-Ng) — ¢ 2G2(N—Ngq)
V2rGy/N — Ny

P(¢7N‘¢07N0) =
= How the Ny are distributed?

- (@0*¢qw)2
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Eternal inflation: (Nqw) = oo

= Other tilted and/or bounded potentials are fine

ISR RN

= Yet, generic feature of inflation (and plateau-type models)

How to determine ¢ and its probability distribution?

= Observers are attached to N

= Let's reverse time: starting from Ng. and evolving back to Ny



Time reversal of stochastic inflation

Time-reversal of diffusion: P(y, s|z,t,zo,t0) with (£ > s > to

= Modified Fokker-Planck equation

0 = 0 0 —
*%P(y,é’kﬂ,t,x(),t()) :87’!// |:F(y75) [GzaylnP(y,swo,to)}] P(y,S‘(L‘,t,QJ().,to)

(;2 E)Z _
+ T@P(y,s\m,xo,to)
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Entry point for ANy = 800

With respect to Ngw

. 800 [Fl > [Fol
= Reverse e-folds time: AN = Nqw — N
= Field values in reference to the quantum wall: z
‘
A(]S = ¢ — ¢qw 3 400
(1-a)(3 - a) Ap3/G?
= In the forward picture, time-reversal may be interpreted
200
as a conditioning and partitioning by the lifetimes: wsss o9ile ol Fu|
ANO = qu - NO % 5 10 15 20 25 30 35 40
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Reverse probability distribution

Exact probability distribution via Girsanov's theorem

_ \/2/71' X XX0 _ X2+72X3
P(A¢p, AN|A¢o, ANy) = inh 2-(1—-7)ANg
(A¢ |Ado 0) T xoGVAN sin [(1 ~ AN e
with 7 = AN/ANy and x = A¢/G .
= A¢y < GV ANy: diffusion dominates = A¢go > G/ ANy: fluxing takes over
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Time-reversed stochastic )NV formalism

Reverse processes are conditioned by the lifetime ANy

= At given lifetime
<ANO> = ANO hence C|AN0 = <AN> — AN
= Partitioning and then resumming:

¢= | can

ANp=0

To determine the distribution of ¢

10°

= Evaluate (AN) at given ¢, ¢o and ANy

= fdd) to get P(C|do, ANo)
= Marginalize over lifetimes to get P(|¢o)

P(¢, AN| o, ANo)

+ oo
P(C|¢>o):/ P(¢, $o, ANo)(Pur(ANo|o))dA N,
0

ANy — o is included!
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Quantum-generated curvature fluctuations

Normalized, (slightly) skewed distribution towards positive values

= Tails slowly decaying as 1/|¢|*/?

= Maximum at positive value (mode =~ 6.9 X 10_3)(3
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Conclusion

Reversing time in stochastic inflation

= Mathematically well-defined while being technically more involved
= Automatically enforces the observer point-of-view

= Conditioning by the lifetimes acts as a regulator
Stochastic  N-formalism: ¢ = (AN) — AN at given ANy

= Marginalize over lifetimes ANy in a last step
» P(C|¢o) is well-defined even when including ANy — oo
= Heavy tails: (¢) = oo = (¢?)
In qualitative terms
= () and [ dAN, do not commute!
= Nothing bad happens in the flat semi-infinite potential

= Time-reversal as a regularization of eternal inflation
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