

Time-reversed Stochastic Inflation

Baptiste Blachier and Christophe Ringeval

Cosmology, Universe and Relativity at Louvain (CURL), UCLouvain, Louvain-la-Neuve, Belgique Laboratoire de Physique de l'ENS (LPENS), Paris, France

Starobinsky inflation

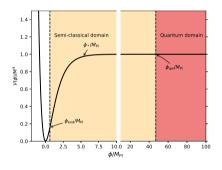
• Prototypical of the favoured models: $V(\phi) = M^4 \left(1 - e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\rm Pl}}}\right)^2$

Classical slow-roll evolution

■ FLRW + Klein-Gordon equation

$$H^{2} = \frac{1}{3} \left(\dot{\phi}^{2} / 2 + V(\phi) \right)$$
$$\frac{\ddot{a}}{a} = -\frac{1}{3} \left(\dot{\phi}^{2} - V(\phi) \right)$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

- Time measured in numbers of e-folds $N \equiv \ln a$
- $H = \dot{a}/a \simeq \mathrm{cste}$ hence quasi de Sitter evolution
- Quantization of linear perturbations $\delta\phi\longrightarrow$ cosmological predictions



Starobinsky inflation

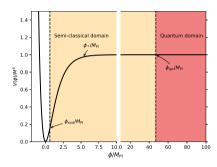
 \bullet Prototypical of the favored models: $V(\phi)=M^4\left(1-e^{-\sqrt{\frac{2}{3}}\frac{\phi}{M_{\rm Pl}}}\right)^2$

Quantum regime

Quantum fluctuations dominate

$$\delta\phi_{\rm cl} < \delta\phi_{\rm qu} \simeq \frac{H(\phi)}{2\pi}$$

- Large primordial curvature perturbations can be generated
- Primordial Black Holes, scalar induced GWs, etc
- Ultra-slow-roll (USR) phases
- Need for a non-perturbative approach → stochastic inflation formalism



If our universe were born at $\phi > \phi_{\rm qw}$?

- Semi-classical evolution from ϕ_{qw} to $\phi_* \sim 10^{17}$ e-folds
- Quantum domain may alter structures only on distances $d>10^{10^{16}}{\rm Gpc}$

3

Eternal inflation

Why bothering? [Ringeval:2010, Ringeval:2019, Blachier:2023]

- Access to largest length scales of our universe
- Super-Hubble fluctuations may create $\Omega_{\rm K},\Omega_{\Lambda}$

Eternal inflation and multiverse structure

- Large quantum fluctuations counteract classical drift
- Inflation is eternal: some regions of the Universe always inflate i.e. never reach $\phi_{\rm qw}$

Can Stochastic Inflation still provide some insights?

4

An effective field theory in curved space-time

Separation between large and small length scales

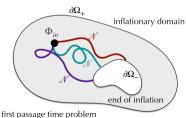
$$\hat{\phi} = \hat{\phi}_{cg} + \hat{\phi}_{uv} = \hat{\phi}_{cg} + \int \frac{d\mathbf{k}}{(2\pi)^3} W\left(\frac{k}{k_{\sigma}}\right) \left[\hat{a}_{\mathbf{k}} \varphi_k(N) e^{-i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^{\dagger} \varphi_k^*(N) e^{i\mathbf{k}\cdot\mathbf{x}}\right]$$

Dynamics of the coarse-grained field

$$\frac{\partial \hat{\phi}_{\text{cg}}}{\partial N} = \hat{\Gamma}_{\text{cg}} + \hat{\xi}_{\varphi} \tag{1}$$

- In quasi-de Sitter spacetime, quantization over Bunch-Davies vacuum
- At $k_{\sigma} \ll aH$, quantum operator \longrightarrow Gaussian noise [Lesgourgues:1996, Grain:2017]
- Langevin equation for the coarse-grained field

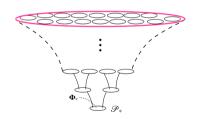
$$\frac{\mathrm{d}\phi_{\mathrm{cg}}}{\mathrm{d}N} = -\frac{V'(\phi_{\mathrm{cg}})}{3H^2} + \frac{H}{2\pi}\xi(N)$$



Extracting curvature fluctuations

Separate universe picture

- = $\delta\phi_{\rm cg}$ create inhomogeneities in regions of size k_σ^{-1}
- Spacetime as an ensemble of independent, locally homogeneous and isotropic Hubble sized patches

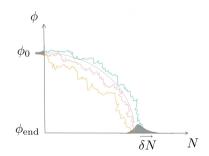


Stochastic- δN formalism [Vennin:2015, Pattison:2017]

 Curvature perturbation ζ is the local amount of expansion

$$\zeta_{\rm cg} = N - \langle N \rangle$$

Non-perturbative approach



Stochastic inflation in the semi-infinite flat potential

- For $\phi>\phi_{\mathrm{qw}}$, pure Brownian motion with diffusion $G\equiv H/(2\pi)$
- ullet Forward transition probability from Fokker-Planck equation with absorbing boundary at $\phi_{
 m qw}$

$$P(\phi, N | \phi_0, N_0) = \frac{1}{\sqrt{2\pi}G\sqrt{N - N_0}} \left[e^{-\frac{(\phi - \phi_0)^2}{2G^2(N - N_0)}} - e^{-\frac{(\phi - 2\phi_{\text{qw}} + \phi_0)^2}{2G^2(N - N_0)}} \right]$$

• How the $N_{\rm qw}$ are distributed?

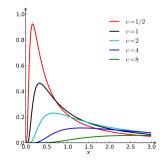
$$P_{\rm LT}(N_{\rm qw}|\phi_0) = \frac{\phi_0 - \phi_{\rm qw}}{\sqrt{2\pi}GN_{\rm qw}^{3/2}} e^{-\frac{(\phi_0 - \phi_{\rm qw})^2}{2G^2N_{\rm qw}}}$$

Eternal inflation: $\langle N_{\rm qw} \rangle = \infty$

- Other tilted and/or bounded potentials are fine
- Yet, generic feature of inflation (and plateau-type models)

How to determine ζ and its probability distribution?

- lacksquare Observers are attached to $N_{
 m qw}$
- \bullet Let's reverse time: starting from $N_{\rm qw}$ and evolving back to N_0



Time reversal of stochastic inflation

Time-reversal of diffusion: $\bar{P}(y, s|x, t, x_0, t_0)$ with $(t > s > t_0)$ [Schrödinger:1933, Nagasawa:1964, Chung:1969, Anderson19821

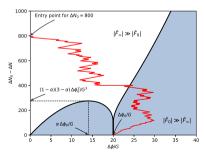
Modified Fokker-Planck equation

$$-\frac{\partial}{\partial s}\bar{P}(y,s|x,t,x_0,t_0) = \frac{\partial}{\partial y} \left[F(y,s) - \left[\frac{\partial^2}{\partial y} \ln P(y,s|x_0,t_0) \right] \right] \bar{P}(y,s|x,t,x_0,t_0)$$
$$+ \frac{G^2}{2} \frac{\partial^2}{\partial y^2} \bar{P}(y,s|x,t,x_0,t_0)$$

With respect to $N_{\rm GW}$

- Reverse e-folds time: $\Delta N \equiv N_{\rm gw} N$
- Field values in reference to the quantum wall: $\Delta \phi \equiv \phi - \phi_{\rm gw}$
- In the forward picture, time-reversal may be interpreted as a conditioning and partitioning by the lifetimes:

In the forward picture, time-reversal may be interpret as a conditioning and partitioning by the lifetimes:
$$\Delta N_0 = N_{\rm qw} - N_0$$



Reverse probability distribution

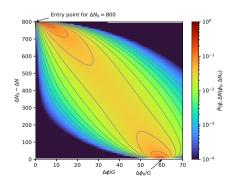
Exact probability distribution via Girsanov's theorem [Mazzolo:2024]

$$\bar{P}(\Delta\phi, \Delta N | \Delta\phi_0, \Delta N_0) = \frac{\sqrt{2/\pi}}{\tau^{3/2}\sqrt{1-\tau}} \frac{\chi}{\chi_0 G\sqrt{\Delta N_0}} \sinh\left[\frac{\chi\chi_0}{(1-\tau)\Delta N_0}\right] e^{-\frac{\chi^2 + \tau^2 \chi_0^2}{2\tau(1-\tau)\Delta N_0}}$$

with $\tau \equiv \Delta N/\Delta N_0$ and $\chi \equiv \Delta \phi/G$.

- $\Delta \phi_0 < G\sqrt{\Delta N_0}$: diffusion dominates

• $\Delta \phi_0 > G\sqrt{\Delta N_0}$: fluxing takes over



Time-reversed stochastic δN formalism

Reverse processes are conditioned by the lifetime ΔN_0

At given lifetime

$$\langle \Delta N_0 \rangle = \Delta N_0$$
 hence $\zeta|_{\Delta N_0} = \langle \Delta N \rangle - \Delta N$

• Partitioning and then resumming:

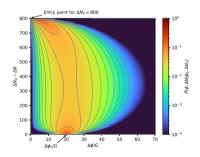
$$\zeta = \bigcup_{\Delta N_0 = 0}^{\infty} \zeta |_{\Delta N_0}$$

To determine the distribution of ζ

- Evaluate $\langle \Delta N \rangle$ at given ϕ, ϕ_0 and ΔN_0
- $\int d\phi$ to get $P(\zeta|\phi_0,\Delta N_0)$
- Marginalize over lifetimes to get $P(\zeta|\phi_0)$

$$P(\zeta|\phi_0) = \int_0^{+\infty} P(\zeta, \phi_0, \Delta N_0) \underbrace{P_{\text{LT}}(\Delta N_0|\phi_0)} d\Delta N_0$$

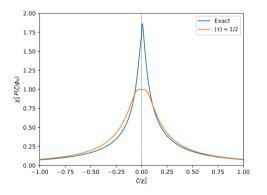
 $\Delta N_0 \to \infty$ is included!

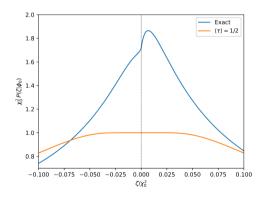


Quantum-generated curvature fluctuations

Normalized, (slightly) skewed distribution towards positive values

- Tails slowly decaying as $1/|\zeta|^{3/2}$
- Maximum at positive value $\zeta_{\rm mode} \simeq 6.9 \times 10^{-3} \chi_0^2$





Conclusion

Reversing time in stochastic inflation

- Mathematically well-defined while being technically more involved
- Automatically enforces the observer point-of-view
- Conditioning by the lifetimes acts as a regulator

Stochastic δN -formalism: $\zeta = \langle \Delta N \rangle - \Delta N$ at given ΔN_0

- Marginalize over lifetimes ΔN_0 in a last step
- $P(\zeta|\phi_0)$ is well-defined even when including $\Delta N_0 \to \infty$
- Heavy tails: $\langle \zeta \rangle = \infty = \langle \zeta^2 \rangle$

In qualitative terms

- $\langle \rangle$ and $\int \mathrm{d}\Delta N_0$ do not commute!
- Nothing bad happens in the flat semi-infinite potential
- Time-reversal as a regularization of eternal inflation