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What happens to an evaporating black hole?

▶ Black hole evolution likely not self-similar

▶ Memory burden: indication for slowdown of evaporation2

▶ Primordial black holes (PBHs) below 1015 g as dark matter

2 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.
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PBH constraints

?
Figure from: B. Carr, F. Kühnel, Primordial Black Holes as Dark Matter: Recent
Developments, arXiv:2006.02838.

A. Alexandre, G. Dvali, E. Koutsangelas, New Mass Window for Primordial Black
Holes as Dark Matter from Memory Burden Effect, arXiv:2402.14069.
V. Thoss, A. Burkert, K. Kohri, Breakdown of Hawking Evaporation opens new Mass
Window for Primordial Black Holes as Dark Matter Candidate, arXiv:2402.17823.
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Outline

How to detect long-lived small primordial black holes?

1 Review of memory burden & slowdown of evaporation

2 High-energetic particles from the transition to memory burden

3 High-frequency gravitational waves from inflationary production
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Memory burden & slowdown of evaporation High-energetic particles High-frequency gravitational waves

Semi-classical evaporation
▶ Single scale: rg ∼ GM

▶ Dimensionless parameter3

S ∼ ℏ−1rgM

∼ 1022
( M

106 g

)2

▶ Hawking particle production:4

ΓSC ∼ 1
rg

ω ∼ ℏ
rg

▶ Number of emissions: M/ω ∼ S

▶ Semi-classical would-be timescale of evaporation
τSC ∼ Srg

3 J. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973).
4 S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975).
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Memory burden & slowdown of evaporation High-energetic particles High-frequency gravitational waves

Breakdown of semi-classicality
▶ Semi-classical approximation: fixed mass

▶ Small correction after single emission
ℏr−1

g
M

= 1
S

▶ Breakdown of semi-classical description after ∼ S emissions

▶ Violation of unitarity avoided

|BH; M⟩ ≈ |BH; M⟩ ≈ |BH; M
(

1 − 1
S

)
⟩

|?; M
2 ⟩
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Memory burden & slowdown of evaporation High-energetic particles High-frequency gravitational waves

Memory burden

Memory burden (MB): slowdown of evaporation5

additional material: MB

▶ What is origin of MB?
Stored information ties system to initial state

▶ When does MB set in?

tMB ∼ qτSC

q ≤ 1
2

▶ Indications for early MB6

q ∼ 1√
S

5 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.

6 M. Michel, S. Z., The Timescales of Quantum Breaking, arXiv:2306.09410.
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Memory burden & slowdown of evaporation High-energetic particles High-frequency gravitational waves

Memory burden
▶ How drastic is the slowdown?

Γ ∼ 1
Sk ΓSC

▶ Quantum analogue system:7

k ∼ 1, . . . , 3
▶ Full evolution

8

dM(t)
dt

∼ dM(0)
dt



1 M(t) ≥ (1 − q)M0

δ
t

τSC
− (q − δ)

1
Sk M(t) < MMB

7 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.

8 G. Dvali, M. Zantedeschi, S. Z., Transitioning to Memory Burden: Detectable Small
Primordial Black Holes as Dark Matter, arXiv:2503.21740.
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How to detect long-lived small primordial black holes?

1 Review of memory burden & slowdown of evaporation

2 High-energetic particles from the transition to memory burden

3 High-frequency gravitational waves from inflationary production
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Memory burden & slowdown of evaporation High-energetic particles High-frequency gravitational waves

Transition to MB

▶ Strongest constraint from today’s Universe

δ ≲ 10−11

▶ Indication for early onset of MB

δ ∼ O(10−1)q q ∼ 1√
S

M ≳ 106 g

Small PBHs detectable today
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High-energetic neutrino signals9

9 G. Dvali, M. Zantedeschi, S. Z., Transitioning to Memory Burden: Detectable Small
Primordial Black Holes as Dark Matter, arXiv:2503.21740. 11
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Scalar-induced gravitational waves10
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10 W. Barker, B. Gladwyn, S. Z., Inflationary and Gravitational Wave Signatures of Small
Primordial Black Holes as Dark Matter, arXiv:2410.11948. 13
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Scalar-induced gravitational waves10

▶ Peak at ∼ kHz to ∼ MHz, background-free

▶ Tail potentially observable by future detectors

▶ Need new experiments for high-frequency gravitational waves

10 W. Barker, B. Gladwyn, S. Z., Inflationary and Gravitational Wave Signatures of Small
Primordial Black Holes as Dark Matter, arXiv:2410.11948.
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Conclusion
▶ Memory burden:

new window for small primordial black holes as dark matter

▶ Indications for early onset of memory burden

▶ High-energetic particles from transition detectable today

▶ High-frequency gravitational waves from inflation
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Memory burden Early breakdown On unitarity Transition to MB

Memory burden (in one slide)1

▶ Microstate entropy:

Ĥ
r−1
g

=
√

S
S∑

k=1
n̂k

▶ Effective energy gaps

EK ∼
√

S
(

1 − ⟨n̂0⟩
S

)p

⟨n̂0⟩=S= 0

▶ Memory burden (MB)

µ ∼
∣∣∣∣∂EK
∂n0

∣∣∣∣
▶ Stored information ties system to initial state2

1 G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory,
arXiv:1810.02336.

2 Memory burden also in inflation: G. Dvali, L. Eisemann, M. Michel, S. Z., Universe’s
Primordial Quantum Memories, arXiv:1812.08749.
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Memory burden Early breakdown On unitarity Transition to MB

Analogue gravity
▶ Ideally: study evaporation without semi-classical limit

▶ Easier: analogue systems

▷ Share important properties with gravity

▷ Accessible for computations and experiments

Black hole

Geometry3

Quantum properties4

3 W. Unruh, Experimental Black-Hole Evaporation?, Phys. Rev. Lett. 46 (1981).
O. Lahav et al., Realization of a sonic black hole analogue in a Bose-Einstein conden-
sate, arXiv:0906.1337.

4 G. Dvali, C. Gomez, Black Holes as Critical Point of Quantum Phase Transition,
arXiv:1207.4059.
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Memory burden Early breakdown On unitarity Transition to MB

Imitate entropy

▶ Entropy S: need eS microstates

▶ Natural explanation: S modes â†
1, . . . , â†

S
(with

[
âi , â†

j
]

= δij)

▶ Microstates (
â†

1

){0,1}
. . .

(
â†

S

){0,1}
|0⟩

▶ Crucial: all microstates must have similar energy
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S
(with

[
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â†

S

){0,1}
|0⟩

▶ Crucial: all microstates must have similar energy

17



Memory burden Early breakdown On unitarity Transition to MB

Imitate entropy

▶ Entropy S: need eS microstates

▶ Natural explanation: S modes â†
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Memory burden Early breakdown On unitarity Transition to MB

Enhanced memory storage5

▶ Hamiltonian
ĤS

r−1
g

=
√

S
S∑

k=1
n̂k︸︷︷︸

â†
k âk

▶ Effective energy gaps

EK ∼
√

S
(

1 − ⟨n̂0⟩
S

)p

⟨n̂0⟩=S= 0

▶ Macrostate ⟨n̂0⟩ = S has entropy S

▶ Dictionary n̂0: carries mass
⟨n̂0⟩ = S: black hole state

n̂k : carry entropy
n̂b: Hawking quanta

5 G. Dvali, Critically excited states with enhanced memory and pattern recognition ca-
pacities in quantum brain networks: Lesson from black holes, arXiv:1711.09079.
G. Dvali, M. Michel, S. Z., Finding Critical States of Enhanced Memory Capacity in
Attractive Cold Bosons, arXiv:1805.10292. 18
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Time evolution

ĤS

r−1
g

= n̂0 +
√

S
(

1 − n̂0
S

)p S∑
k=1

n̂k + n̂b + 1
S

(
â†

0b̂ + h.c.
)

S∑
k=1

⟨n̂k⟩ = 0

0 ∼S rg
t0

S

<n0>

Memory burden:6 entropy prevents evaporation
6 G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory,

arXiv:1810.02336.
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ĤS

r−1
g

= n̂0 +
√

S
(

1 − n̂0
S

)p S∑
k=1

n̂k + n̂b + 1
S

(
â†
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â†

0b̂ + h.c.
)

S∑
k=1

⟨n̂k⟩ ∼ S

0 ∼S rg
t0

S

<n0>

Memory burden:6 entropy prevents evaporation
6 G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory,

arXiv:1810.02336. 19



Memory burden Early breakdown On unitarity Transition to MB

Full model15

Ĥ = ĤS> + n̂b + 1
S

(
â†

0b̂ + h.c.
)

+ ĤS< + interactions

⟨n̂0⟩ = S> −→ ⟨n̂0⟩ = S<

▶ Exact time evolution:16 transition suppressed dynamically

▶ Slowdown at the latest after half evaporation back

15 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.

16 M. Michel, S. Z., TimeEvolver: A Program for Time Evolution With Improved Error
Bound, arXiv:2205.15346.
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+ ĤS< + interactions

⟨n̂0⟩ = S> −→ ⟨n̂0⟩ = S<

▶ Exact time evolution:16 transition suppressed dynamically

▶ Slowdown at the latest after half evaporation back

15 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.

16 M. Michel, S. Z., TimeEvolver: A Program for Time Evolution With Improved Error
Bound, arXiv:2205.15346.

20



Memory burden Early breakdown On unitarity Transition to MB

Full model15
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Ĥ = ĤS> + n̂b + 1
S

(
â†
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+ ĤS< + interactions

⟨n̂0⟩ = S> −→ ⟨n̂0⟩ = S<

▶ Exact time evolution:16 transition suppressed dynamically

▶ Slowdown at the latest after half evaporation back

15 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011.

16 M. Michel, S. Z., TimeEvolver: A Program for Time Evolution With Improved Error
Bound, arXiv:2205.15346. 20



Memory burden Early breakdown On unitarity Transition to MB

Full model15
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Black hole criticality

▶ Gravitational coupling

α = ℏGr−2
g

= 1
S

▶ Black hole constituents

N = M
ℏr−1

g

= S

▶ Critical collective coupling17

αN = 1

17 G. Dvali, C. Gomez, Black Holes as Critical Point of Quantum Phase Transition,
arXiv:1207.4059.
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Imitate criticality

▶ Prototype model

Ĥ =
Q∑

k=1

(
n̂k − α

4
(
2n̂0n̂k + â† 2

0 â2
k + â† 2

k â2
0

))

+ Cm
2

Q∑
k=1

Q∑
l=k+1

f (k, l)
(
â† 2

k â2
l + h.c.

)
.

▶ Critical point
α ⟨n̂0⟩ = 1

▶ Study quantum break-time:18

timescale of breakdown of semi-classical approximation

18 G. Dvali, C. Gomez, D. Flassig, A. Pritzel, Scrambling in the Black Hole Portrait,
arXiv:1307.3458.
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0 â2
k + â† 2
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Result19
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19 M. Michel, S. Z., TimeEvolver: A Program for Time Evolution With Improved Error
Bound, arXiv:2205.15346.
M. Michel, S. Z., The Timescales of Quantum Breaking, arXiv:2306.09410.
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Page time20

back

20 D. Page, Information in black hole radiation, arXiv:hep-th/9306083.
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Classical black hole: no hair
▶ Geometry fully determined by mass

rg ∼ GM

▶ No hair outside21

21 See e.g., P. Chrusciel, J. Costa, M. Heusler, Stationary Black Holes: Uniqueness and
Beyond, arXiv:1205.6112.
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Quantum black hole: entropy22

▶ Entropy

S ∼
r2
g

ℏG

▶ Black holes quantum-mechanically distinct

▶ exp(S) different versions of a black hole of mass M

22 J. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973).
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Add evaporation17

▶ Not unitary: information about initial state lost18

▶ Question: how long is Hawking evaporation valid?

17 S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975).

18 S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976).
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Add evaporation17

?

▶ Not unitary: information about initial state lost18
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Breakdown of semi-classicality

▶ Semi-classical approximation: fixed mass

▶ Small correction after single emission

ℏr−1
g

M

= 1
S

|BH; M⟩

≈ |BH; M
(

1 − 1
S

)
⟩ ≈ |?; M

2 ⟩

▶ Full breakdown of semi-classical description back

28
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Microscopic MB19

▶ Microscopic model

Ĥ
r−1
g

= n̂0 +
√

S
(

1 − n̂0
S

)p S∑
k=1

n̂k

▶ Effective energy gap

EK =
(

1 − n0
S

)p √
Sr−1

g

▶ Memory burden

µ ∼
∣∣∣∣∂EK
∂n0

∣∣∣∣ = p
(

1 − n0
S

)p−1 √
Sr−1

g

S∑
k

nk

▶ Critical value

q ≡ (S − n0)crit
S =

(
p

√
S

)−1/(p−1)

19 G. Dvali, L. Eisemann, M. Michel, S. Z., Black Hole Metamorphosis and Stabilization
by Memory Burden, arXiv:2006.00011. 29
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Transition to MB20

▶ Increased energy gap

∆N = µ rg = p
√

S
2

(M0 − M(t)
M0

)p−1

▶ Suppressed emission

Γ =
( 1

S

)∆N
Γsc

▶ Approximate around onset of MB

Γ ≃ exp
(

−(1 − q)M0 − M(t)
δM0

)
Γsc

with
δ = q

(p − 1) ln S

∼ O(10−1)q

20 G. Dvali, M. Zantedeschi, S. Z., Transitioning to Memory Burden: Detectable Small
Primordial Black Holes as Dark Matter, arXiv:2503.21740.
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The transition21

▶ Solve
dM(t)

dt ∼ −r−1
g Γ

▶ Result: “slow” change of rate

dM(t)
dt ∼ −r−1

g Γsc
δ τSC

t

21 G. Dvali, M. Zantedeschi, S. Z., Transitioning to Memory Burden: Detectable Small
Primordial Black Holes as Dark Matter, arXiv:2503.21740.
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No dependence on q
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