

Gravitational lensing of GWs: new insights from the wave optics regime

COSMOFondue

Martin Pijnenburg – PhD student, University of Geneva

Null geodesics are bent by masses:

→ Usual lensing picture (deflection angle, etc.)

→ Key prediction of General Relativity

→ Both EM and GW signals

Is lensing really the same for EM and GW signals? Some ideas...

Is lensing really the same for EM and GW signals? Some ideas...

EM waves	GW
Extended sources	~ Point-like sources → mainly magnification
Observed $\lambda_{\mathrm{wave}} \colon \leq \mathcal{O}(1\mathrm{m})$	Observed λ_{wave} : $\leq \mathcal{O}(5 \cdot 10^7 \mathrm{m})$ (LIGO, ET) $\leq \mathcal{O}(5 \cdot 10^{10} \mathrm{m})$ (LISA) $\leq \mathcal{O}(5 \cdot 10^{16} \mathrm{m})$ (PTA)
Spin 1 (photon)	Spin 2, tensorial signal

Point particle null-geodesics, known limitation in the EM case:

PSF (Airy disk)

Point particle null-geodesics, known limitation in the EM case:

PSF (Airy disk)

More generally: diffraction

 $\lambda_{
m wave} \sim$ obstacle size

Point particle null-geodesics, known limitation in the EM case:

PSF (Airy disk)

More generally: diffraction

e.g. aperture, or ... gravitational lens?

Diffraction:

 $\lambda_{
m wave} \sim$ obstacle size

(e.g. gravitational radius)

EM waves	GW
Observed $\lambda_{\rm wave}$: $\leq 10^{-4} M_{\odot}$	Observed $\lambda_{\mathrm{wave}}: \leq 10^4 M_{\odot}$ (LIGO, ET) $\leq 10^7 M_{\odot}$ (LISA) $\leq 10^{13} M_{\odot}$ (PTA)

Diffraction:

 $\lambda_{
m wave} \sim$ obstacle size

(e.g. gravitational radius)

EM waves	GW
Observed λ_{wave} : $\leq 10^{-4} M_{\odot}$	Observed $\lambda_{\rm wave}$: $\leq 10^4 M_{\odot}$ (LIGO, ET) $\leq 10^7 M_{\odot}$ (LISA) $\leq 10^{13} M_{\odot}$ (PTA)

Relevant astrophysical and cosmological lenses!

Assuming a weak field lensing

$$ds^{2} = -(1+2U) dt^{2} + (1-2U) d\mathbf{r}^{2}$$

Assuming a weak field lensing

$$ds^{2} = -(1+2U) dt^{2} + (1-2U) d\mathbf{r}^{2}$$

and a scalar signal ϕ , the propagation follows (in Fourier space) :

$$(\nabla^2 + \omega^2)\phi = 4\omega^2 U\phi, \qquad \omega = 2\pi f$$

Define the signal amplification
$$\sqrt{\mu} = \frac{\phi}{\phi({\rm no~lens})}$$
 , (magnification) $^{1/2}$

Define the signal amplification $\sqrt{\mu}=\frac{\phi}{\phi({\rm no\ lens})}$, (magnification) $^{1/2}$

For **single-plane**, **paraxial**, **thin lens**, wave equation for $\sqrt{\mu}$ is solved by

$$\sqrt{\mu} \propto f \int_{\text{lens plane}} d^2 \mathbf{x} \, \exp\left(if \, \mathrm{T_{travel}}(\mathbf{x}, \theta_S)\right)$$

Define the signal amplification $\sqrt{\mu}=\frac{\phi}{\phi({\rm no~lens})}$, (magnification) $^{1/2}$

For **single-plane, paraxial, thin lens**, wave equation for $\sqrt{\mu}$ is solved by

Geometrical + Shapiro travel time for the path through **x**

Define the signal amplification $\sqrt{\mu} = \frac{\varphi}{\phi(\text{no lens})}$, (magnification)^{1/2}

For **single-plane, paraxial, thin lens**, wave equation for $\sqrt{\mu}$ is solved by

Define the signal amplification $\sqrt{\mu} = \frac{\phi}{\phi({\rm no~lens})}$, (magnification)^{1/2}

For **single-plane**, **paraxial**, **thin lens**, wave equation for $\sqrt{\mu}$ is solved by

Define the signal amplification
$$\sqrt{\mu} = \frac{\varphi}{\phi({\rm no~lens})}$$
 , (magnification)^{1/2}

For **single-plane, paraxial, thin lens**, wave equation for $\sqrt{\mu}$ is solved by

- **Highly oscillatory** diffraction integral
- frequency dependent lensing

Ö

Define the signal amplification
$$\sqrt{\mu} = \frac{\varphi}{\phi(\text{no lens})}$$
 , (magnification)^{1/2}

For **single-plane**, **paraxial**, **thin lens**, wave equation for $\sqrt{\mu}$ is solved by

$$\sqrt{\mu} \propto f \int_{\text{lens plane}} d^2 \mathbf{x} \, \exp\left(if \, \mathcal{T}_{\text{travel}}(\mathbf{x}, \theta_S)\right)$$

- **Highly oscillatory** diffraction integral
- frequency dependent lensing
- well defined $f \to \infty$ limit : only the stationary phase points contribute i.e. $\nabla T_{\rm travel} = 0$

Ö

Define the signal amplification
$$\sqrt{\mu} = \frac{\varphi}{\phi(\text{no lens})}$$
 , (magnification)^{1/2}

For **single-plane**, **paraxial**, **thin lens**, wave equation for $\sqrt{\mu}$ is solved by

$$\sqrt{\mu} \propto f \int_{\text{lens plane}} d^2 \mathbf{x} \, \exp\left(if \, \mathcal{T}_{\text{travel}}(\mathbf{x}, \theta_S)\right)$$

- **Highly oscillatory** diffraction integral
- frequency dependent lensing
- well defined $f \to \infty$ limit : only the stationary phase points contribute i.e. $\nabla T_{\rm travel} = 0$
- → recover the geodesic limit & associated observables naturally (Fermat principle)

Framework established since the 1970's

Ohanian1974, Bliokh+1975, Bontz+1981, Mandzos1982, Schneider+1985, Deguchi+1986, Ulmer+1995, Nakamura1998, ...

Framework established since the 1970's

Ohanian1974, Bliokh+1975, Bontz+1981, Mandzos1982, Schneider+1985, Deguchi+1986, Ulmer+1995, Nakamura1998, ...

No new physics, but different phenomelogy wrt pure null geodesics

Framework established since the 1970's

Ohanian1974, Bliokh+1975, Bontz+1981, Mandzos1982, Schneider+1985, Deguchi+1986, Ulmer+1995, Nakamura1998, ...

No new physics, but different phenomelogy wrt pure null geodesics State of the art numerical methods have been developed this year

e.g. GLoW code for diffraction integral

Villarrubia-Rojo+2025

Illustration example:

 $10^9 M_{\odot}$ DM (sub)halo at z=1 with truncated SIS profile, source at z=5, weak lensing regime, "good" alignment

Illustration example:

 $10^9 M_{\odot}$ DM (sub)halo at z=1 with truncated SIS profile, source at z=5, weak lensing regime, "good" alignment

Illustration example:

 $10^9 M_{\odot}$ DM (sub)halo at z=1 with truncated SIS profile, source at z=5, weak lensing regime, "good" alignment

A few results (not mine!) from the literature:

- Inclusion of lensing analyses is **necessary** for next gen. GW missions Gupta+2025

A few results (not mine!) from the literature:

- Inclusion of lensing analyses is **necessary** for next gen. GW missions Gupta+2025
- LISA observation prospects of diffraction: expected detection to low chances of detection depending on study

e.g. Savastano+2023, Brando+2024

A few results (not mine!) from the literature:

- Inclusion of lensing analyses is **necessary** for next gen. GW missions Gupta+2025
- LISA observation prospects of **diffraction**: **expected detection** to **low chances of detection** depending on study e.g. Savastano+ 2023, Brando+2024
- Very sensitive to the **abundance** and **profile** of the low-mass end (e.g. $<10^{11}M_{\odot}$) DM halos : potential to distinguish DM models

Savastano+ 2023, Brando+2024, Singh+2025

Beyond initial assumptions:

This framework relied on weak fields potentials, scalar signals...

... But **GW** are not scalars!

$$h_{\mu\nu;\alpha}^{;\alpha} + 2\bar{R}_{\alpha\mu\beta\nu} h^{\alpha\beta} = 0$$

Beyond initial assumptions:

This framework relied on weak fields potentials, scalar signals...

... But **GW** are not scalars! $h_{\mu
u ; lpha}{}^{; lpha} + 2 ar{R}_{lpha \mu eta
u} \; h^{lpha eta} = 0$

... And what if the lens is strong field (e.g. a black hole)?

Expect even richer phenomenology!

Beyond initial assumptions:

This framework relied on weak fields potentials, scalar signals...

... But **GW** are not scalars! $h_{\mu
u; lpha}{}^{;lpha} + 2 ar{R}_{lpha \mu eta
u} \; h^{lpha eta} = 0$

... And what if the lens is **strong field** (e.g. a **black hole**)? Expect even **richer phenomenology!**

... but a practical and generic framework for diffractive gravitational lensing is missing

Tensorial lensing by a strong field:

If the lens has high symmetry e.g. Schwarzschild BH:

Black hole perturbation theory provides approximate analytical results for long $R_{\rm Schw}/\lambda_{\rm wave} < 1$

Tensorial lensing by a strong field:

If the lens has high symmetry e.g. Schwarzschild BH:

Black hole perturbation theory provides approximate analytical results for long $R_{\rm Schw}/\lambda_{\rm wave} < 1$

- → lensing by a BH depends on the helicity of the signal
- → non-trivial effects on polarisations, the polarization content is not preserved by lensing Pijnenburg+, 2024

Wave optics lensing in triple systems: towards a phenomenology

Example: consider a microlensing-like dynamical setup

Wave optics lensing in triple systems: towards a phenomenology

Example: consider a microlensing-like dynamical setup

Stokes parameters of GWs:

I: total intensity

V: circularly-polarized intensity

 $\mathcal{V} = V/I$: circularly polarized fraction of the intensity

Wave optics lensing in triple systems: towards a phenomenology

Example: consider a microlensing-like dynamical setup

• Wave optics is a regime in the range of future GW observations

- Wave optics is a regime in the range of future GW observations
- Relevant lenses include DM subhalos, supermassive black holes, ...

- Wave optics is a regime in the range of future GW observations
- Relevant lenses include DM subhalos, supermassive black holes, ...
- Without new physics, new lensing phenomenology wrt EM case
 - Frequency-dependent magnification
 - Changes in the polarisation/helicity content (BH lens)

Such a **triple system** is suspected in the GW event GW190521

Inspiral phase without lens

Toy GW190521-inspired source, in LISA- « optimal » wave optics

Toy GW190521-inspired source, in LISA- « optimal » wave optics

LISA detectable with SNR > 100 if at $z \sim 0.01$

Start with:
$$\mathrm{d}s^2 = (\bar{g}_{\mu\nu} + h_{\mu\nu})\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}$$

E.g. gauge fixing :
$$h^{\nu}_{\mu;\nu}=0, \quad h^{\mu}_{\;\;\mu}=0$$

→ Wave equation :

$$h_{\mu\nu;\alpha}^{;\alpha} + 2\bar{R}_{\alpha\mu\beta\nu} h^{\alpha\beta} = 0$$
, with $h_{\mu\nu;\alpha}^{;\alpha} \equiv \Box h_{\mu\nu}$.

BH lenses, historical works, at the formal level:

- Matzner (1968)
- Peters (1976)
- Chrzanowski et al. (1976)

- De Logi, Kovacs (1977)
- Futterman et al. (1988)

• • •

More recently: Dolan (2018)

Reference work for phenomenology:

Wave effects in gravitational lensing of gravitational waves from chirping binaries

Ryuichi Takahashi (Kyoto U.), Takashi Nakamura (Kyoto U.)

May, 2003

28 pages

Published in: Astrophys. J. 595 (2003) 1039-1051

e-Print: astro-ph/0305055 [astro-ph]

DOI: 10.1086/377430

View in: ADS Abstract Service

For reference search → 253 citations

Reference work for phenomenology:

Wave effects in gravitational lensing of gravitational waves from chirping binaries

Ryuichi Takahashi (Kyoto U.), Takashi Nakamura (Kyoto U.)

May, 2003

 $h_{\mu\nu;\alpha}^{;\alpha} + 2\bar{R}_{\alpha\mu\beta\nu} h^{\alpha\beta} = 0$

28 pages

Published in: Astrophys.J. 595 (2003) 1039-1051

e-Print: astro-ph/0305055 [astro-ph]

DOI: 10.1086/377430

View in: ADS Abstract Service

Assume
$$h_{\mu\nu} = \phi \cdot e_{\mu\nu}$$

Solve for $\,\phi\,$

reference search

→ 253 citations

Tensorial wave optics

In Pijnenburg, et al., 2024, we treat lensing by a Schwarzschild BH

avoiding the assumption $\,h_{\mu
u} = \phi \cdot e_{\mu
u}\,$

Tensorial wave optics

In Pijnenburg, et al., 2024, we treat lensing by a Schwarzschild BH

avoiding the assumption $\,h_{\mu
u} = \phi \cdot e_{\mu
u}\,$

Rather use: - black hole perturbation theory (BHPT)

- (quantum) waves scattering (e.g. phase shifts)

since the equations are quantum like (RW, Zerilli)

to keep track of the full polarisation structure analytically

Tensorial wave optics

Polarisation

Quantifying the signal polarisation content $V \in [-1,1]$:

$$\mathcal{V} \equiv \frac{2\text{Im}[\tilde{h}_{+}\tilde{h}_{\times}^{*}]}{|\tilde{h}_{+}|^{2} + |\tilde{h}_{\times}|^{2}} = V/I \quad \text{in terms of the Stokes parameters } V, I.$$

$$= \frac{|\tilde{h}^{(2)}|^{2} - |\tilde{h}^{(-2)}|^{2}}{|\tilde{h}^{(2)}|^{2} + |\tilde{h}^{(-2)}|^{2}}$$

constant in geometric optics and scalar wave optics

Polarisation

Quantifying the signal polarisation content $\mathcal{V} \in [-1,1]$:

$$\mathcal{V} \equiv \frac{2 \text{Im}[\tilde{h}_{+}\tilde{h}_{\times}^{*}]}{|\tilde{h}_{+}|^{2} + |\tilde{h}_{\times}|^{2}} = V/I$$
 in terms of the Stokes parameters V, I .

$$= \frac{|\tilde{h}^{(2)}|^2 - |\tilde{h}^{(-2)}|^2}{|\tilde{h}^{(2)}|^2 + |\tilde{h}^{(-2)}|^2}$$

constant in geometric optics and scalar wave optics

in general **not constant** in tensorial wave optics for $\,\lambda_{GW}\gg rac{2GM_{
m lens}}{c^2}$

• LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$

• LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$

• AGN lens mass : $M=1.2\times 10^6 M_{\odot} \implies \omega M=0.11$

- LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$
- AGN lens mass : $M=1.2\times 10^6 M_{\odot} \implies \omega M=0.11$
- Source-Lens distance (disk migration trap) : $d_{SL} = 700 M$

- LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$
- AGN lens mass : $M=1.2\times 10^6 M_{\odot} \implies \omega M=0.11$
- Source-Lens distance (disk migration trap) : $d_{SL} = 700 M$
- GW190521-inspired heavy source : $m_1=120M_{\odot}, m_2=71M_{\odot}$

- LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$
- AGN lens mass : $M=1.2\times 10^6 M_{\odot} \implies \omega M=0.11$
- Source-Lens distance (disk migration trap) : $d_{SL} = 700 M$
- GW190521-inspired heavy source : $m_1=120M_{\odot}, m_2=71M_{\odot}$

LISA detectable with SNR > 100 if at $z\sim0.01$

Project $h_{\mu\nu}$ on basis functions on the sphere with even (Y) and odd (X) parity :

$$h_{rr} = \sum_{\ell m} h_{rr}^{\ell m} Y^{\ell m},$$
 (radial)

$$h_{rA} = \sum_{\ell m} h_r^{\ell m} \ X_A^{\ell m} + j_r^{\ell m} \ Y_A^{\ell m}, \quad A = \theta, \phi,$$
 (radial/angular)

$$h_{AB} = \sum_{\ell_m} h_2^{\ell m} X_{AB}^{\ell m} + r^2 G^{\ell m} Y_{AB}^{\ell m} + r^2 K^{\ell m} \Omega_{AB} Y^{\ell m}, \quad A, B = \theta, \phi,$$
 (angular)

From metric multipoles, define two **gauge invariant** master functions:

$$\Psi_{\text{odd}}^{\ell m} = \frac{2r}{(\ell - 1)(\ell + 2)} \left(\frac{\partial}{\partial r} \hat{h}_t^{\ell m} - \frac{\partial}{\partial t} \hat{h}_r^{\ell m} - \frac{2}{r} \hat{h}_t^{\ell m} \right)$$

$$r^{-1}\Psi_{\text{even}}^{\ell m} \propto \hat{K}^{\ell m} + \frac{2(1-2M/r)}{(\ell-1)(\ell+2)+6M/r} \left((1-2M/r)\hat{h}_{rr}^{\ell m} - r\frac{\partial}{\partial r}\hat{K}^{\ell m} \right)$$

Martel, Poisson. Physical Review. D 71.10 (2005)

 $\Psi^{\ell m}_{ullet}$ obey Zerilli & Regge-Wheeler equations, ullet = even, odd

$$\frac{\mathrm{d}^2 \Psi_{\bullet}}{\mathrm{d}r_*^2} + (\omega^2 - V_{\bullet}) \Psi_{\bullet} = 0, \quad \text{with } r_*(r) = r - 2M \ln \left(\frac{r}{2M} - 1\right)$$

Schrödinger-like, for given potentials $V_{ullet}(\ell,r,M)$

Poisson, Sasaki. Physical Review D 51.10 (1995)

 $\Psi^{\ell m}_{ullet}$ obey Zerilli & Regge-Wheeler equations, ullet = even, odd

$$\frac{\mathrm{d}^2 \Psi_{\bullet}}{\mathrm{d}r_*^2} + (\omega^2 - V_{\bullet}) \Psi_{\bullet} = 0, \quad \text{with } r_*(r) = r - 2M \ln \left(\frac{r}{2M} - 1\right)$$

Schrödinger-like, for given potentials $V_{ullet}(\ell,r,M)$

For the scattering problem:

Asymptotic solutions for $\pmb{\omega M} \ll \pmb{1}$ are known, expect $\Psi^{\ell m}_{ullet} \sim \Psi^{\mathrm{plane}}_{ullet} + \Psi^{\mathrm{sph}}_{ullet}$

Poisson, Sasaki. Physical Review D 51.10 (1995)

Assume initial Derive corresponding (absence of lens) Solve differential Derive final equ. such that $\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$ (incl. lensing)

Assume initial

 $h_{\mu\nu}^{\rm source}$

(absence of lens)

Derive final

 $h_{\mu\nu}$

(incl. lensing)

Assume initial Derive corresponding (absence of lens) Solve differential Derive final equ. such that $\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$ (incl. lensing)

Assume initial

 $h_{\mu\nu}^{\rm source}$

(absence of lens)

Derive corresponding

 $\Psi^{
m source}_{lack}$

Derive final

 $h_{\mu\nu}$

(incl. lensing)

Solve differential equ. such that

$$\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$$

Assume initial

 $h_{\mu\nu}^{
m source}$

(absence of lens)

TT gauge, propagation along $e_{\scriptscriptstyle Z}$:

$$h_{ij}^{\text{source}} = \begin{pmatrix} h_{+} & h_{\times} & 0\\ h_{\times} & -h_{+} & 0\\ 0 & 0 & 0 \end{pmatrix}_{ij}$$

$$h_{+} = \frac{A_{\rm in}}{\tilde{r}} \frac{1 + \cos^{2}\tilde{\theta}_{L}}{2} \cos[\omega(t - \tilde{r}) - 2\tilde{\phi}_{L}]$$

$$h_{\times} = \frac{A_{\rm in}}{\tilde{r}} \cos \tilde{\theta}_L \sin[\omega(t - \tilde{r}) - 2\tilde{\phi}_L]$$

(locally plane wave)

Assume initial Derive corresponding (absence of lens) Solve differential Derive final equ. such that $\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$ (incl. lensing)

Assume initial

 $h_{\mu\nu}^{\mathrm{source}}$

(absence of lens)

Derive corresponding

 $\Psi^{\text{source}}_{lack}$

Derive final

 $h_{\mu\nu}$

(incl. lensing)

Solve differential equ. such that

$$\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$$

Assume initial Derive corresponding (absence of lens) Solve differential Derive final equ. such that $\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$ (incl. lensing)

Technicality: in principle, should sum

$$\lim_{r \to \infty} \sum_{\ell m} \Psi^{\ell m}_{\bullet}$$

In practice :
$$\sum_{\ell m} \lim_{r \to \infty} \Psi^{\ell m}_{ullet}$$

Technicality: in principle, should sum

$$\lim_{r \to \infty} \sum_{\ell m} \Psi^{\ell m}_{\bullet}$$

In practice: $\sum_{r \to \infty} \lim_{r \to \infty} \Psi^{\ell m}_{ullet}$

... diverges analytically & numerically

Derive final $h_{\mu\nu}$ (incl. lensing)

non standard summation methods

Solve differential equ. such that

$$\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{source}}_{\bullet} + \Psi^{\text{lensed}}_{\bullet}$$

Gravitational lensing: EM waves vs gravitational waves

Gravitational lensing: EM waves vs gravitational waves

Gravitational lensing: EM waves vs gravitational waves

