

Modified Gravity vs Dark Interactions: Settling the Dispute through the Distortion of Time

arXiv:2404.09379

Sveva Castello*, Z. Wang, L. Dam, C. Bonvin, L. Pogosian

*sveva.castello@unige.ch

Motivation

Within linear perturbation theory, the Universe can be described with **four fields**. We can learn about fundamental physics on cosmological scales by **testing the relations** among them.

The standard cosmological model involves two obscure components, dark energy and dark matter (DM), motivating the search for deviations from this standard picture.

Two modified scenarios

Modified gravity: deviations from the **Einstein** equations of General Relativity.

Interactions in the dark sector: modifications in the Euler equation for DM.

 m_2

Key question

"Can cosmological observations distinguish between gravity modifications and interactions in the dark sector?"

Two representative models with an additional scalar field:

Generalized Brans-Dicke Coupled Quintessence (GBD) (CQ) Coupling to All matter DM only Coupling strength eta_1

Symmetron model: modifications relevant at late times (z < 1).

 m_1

Standard observables

Growth of cosmic structure

In both scenarios, density perturbations evolve according to

$$\ddot{\delta} + \mathcal{H}\dot{\delta} = 4\pi G \left[1 + \frac{2Bk^2}{8\pi G(a^2m_i^2 + k^2)} \right] a^2 \rho \delta$$

$$\left\{ \begin{array}{l} B^{\rm GBD} = \beta_1^2 \\ B^{\rm CQ} = \beta_2^2 \left(\frac{\rho_{\rm DM}}{\rho}\right)^2 \left(\frac{\delta_{\rm DM}}{\delta}\right) \end{array} \right\} \begin{array}{l} \text{yielding an elliptical} \\ \text{constraint on} \\ B^{\rm GBD} + B^{\rm CQ} \end{array}$$

Weak lensing

Weak lensing (WL) **cannot distinguish** between the two scenarios, since in both cases it provides a constraint on the same relation:

$$k^2(\Phi + \Psi) = -8\pi G\rho\delta$$

Deus ex machina

A new observable comes to the rescue: gravitational redshift.

Photons emitted by galaxies lose energy in escaping the local gravitational potential, leading to an additional redshift contribution.

We can extract this signal by measuring two-point correlations of the galaxy number counts fluctuations $\Delta(\hat{\mathbf{n}},z)$:

$$\Delta(\mathbf{\hat{n}}, z) = \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{\hat{n}}) + \frac{1}{\mathcal{H}} \partial_r \Psi + \text{Doppler terms}$$

Standard terms: density and redshift-space distortions (RSD)

Relativistic corrections, including gravitational redshift

- Give a **symmetric** contribution to the correlation.
- Probe the growth rate of structure.
- Give an anti-symmetric contribution.
- Measurable by upcoming / future surveys (DESI, SKA2).

Gravitational redshift gives a measurement of the **temporal distortion** Ψ , providing a direct test of the Euler equation!

Numerical proof

- 1. Generate a mock data vector with one kind of modification.
- 2. Perform a fit leaving the parameters of both models free.

SKA2 forecast: RSD gives the expected elliptical constraint, while the inclusion of gravitational redshift breaks the degeneracy up to $\beta_{*2}\sim 0.7$ for m_i = 0.1Mpc⁻¹ $\beta_{*2}\sim 0.4$ for m_i = 0.01Mpc⁻¹

Physical intuition

The **growth of structure**, probed by RSD, can be modified in the same way by a change in the depth of the gravitational potentials (GBD) or by a fifth force (CQ). **Gravitational redshift** breaks the degeneracy by probing how photons escape from the potentials.

Constraints on the present values of the couplings, with m_i = 0.1 Mpc⁻¹

Viable CQ fiducial ($\beta_{*2}=1$)

Varying the coupling strength

Scalar field mass

